

REPORT TO NSW DEPARTMENT OF EDUCATION

ON DETAILED SITE INVESTIGATION (DSI)

FOR PROPOSED ALTERATIONS AND ADDITIONS

AT KOGARAH PUBLIC SCHOOL, 24B GLADSTONE STREET, KOGARAH, NSW

Date: 24 March 2025 Ref: E32976BT2rpt4-DSI

JKEnvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Katrina Taylor Senior Associate | Environmental Scientist

Report reviewed by:

Brendan Page Principal | Environmental Scientist CEnvP SC

For and on behalf of JKE PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E32976BT2rpt4-DSI DRAFT	Draft Report	4 March 2025
E32976BT2rpt4-DSI	Final Report	24 March 2025

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the Client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Executive Summary

Department of education (DoE) ('the client') commissioned JK Environments (JKE) to undertake a Detailed Site Investigation (DSI) for the proposed alterations and additions at Kogarah Public School, 24B Gladstone Street, Kogarah, NSW. The purpose of the investigation was to characterise the site contamination conditions in order to assess the risks in relation to contamination and establish whether remediation is required. For the purpose of the DSI 'the site' includes the area where the activity will occur, as shown on Figures 1 and 2 in Appendix A. The site is located in the eastern portion of the wider school property.

This report has been prepared to support the Review of Environmental Factors (REF) for proposed alterations and additions to Kogarah Public School, with regards to Chapter 4 of State Environmental Planning Policy (Resilience and Hazards) 2021 (formerly known as SEPP55).

A geotechnical investigation was undertaken in conjunction with this DSI by JK Geotechnics (JKG). The results of the geotechnical investigation are presented in a separate report (Ref: 32976LT1rpt). This report should be read in conjunction with the JKG report.

A Sampling Analysis Quality Plan (SAQP) was prepared for this investigation (Ref: E32976PTrpt3-SAQP, dated 6 January 2025). The SAQP is attached in Appendix G. JKE have previously undertaken a Phase 1 Preliminary Site Investigation (desktop), and a Phase 2 Preliminary Intrusive Investigation at the site and within the wider school. WSP has also previously prepared a Preliminary Desktop Site Investigation at the site. A summary of this information has been included in Section 3.

The primary aim of the DSI was to characterise the soil and groundwater contamination conditions in accessible areas in order to assess site risks in relation to contamination and establish whether remediation is required. A secondary aim of the investigation was to provide preliminary waste classification data for off-site disposal of soil waste which may be generated during the proposed development works.

The objectives of the DSI were to:

- Assess the soil and groundwater contamination conditions via implementation of a sampling and analysis program that considers the potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC) identified in the PSI;
- Document an iteration and review of the conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether further intrusive investigation and/or remediation is required.

The scope of work included the following: review of site information, including background and site history information from various sources outlined in the report; preparation of a CSM; design and implementation of a SAQP; interpretation of the analytical results against the adopted Site Assessment Criteria (SAC); Data Quality Assessment; and preparation of a report including a Tier 1 risk assessment.

The AEC identified at the site included: fill material; historical bus depot land use; use of pesticides; hazardous building materials; off-site areas (including dry cleaners and mechanics/service stations). The boreholes/test pits encountered fill materials to depths of approximately 0.2m below ground level (BGL) to 1.4mBGL in all locations and was generally underlain by sandstone bedrock. The fill typically comprised of sandy, clayey or gravelly soils with inclusions of igneous, ironstone, and sandstone gravel; plastic, glass, tile, metal and brick fragments; slag; ash; wood and root fibres. No fibre cement fragments (FCF) or asbestos containing material (ACM) was encountered in the fill material during the fieldwork.

A selection of soil and groundwater samples were analysed for the CoPC identified in the CSM. In fill soil, carcinogenic polycyclic aromatic hydrocarbons (PAHs) were reported at concentrations above the health-based SAC. Asbestos (as asbestos fines/fibrous asbestos - AF/FA) was also detected in fill soils at one location, although the concentration of asbestos was below the health-based SAC. As a duty of care, and to meet the requirements under Clause 429 of the

Work Health and Safety Regulation (2017), an asbestos management plan (AMP) (for asbestos in/on soil) should be prepared and implemented for the current land use/operations, until the site is redeveloped. The AMP should be prepared by a Licensed Asbestos Assessor (LAA).

In groundwater, copper, zinc and PAHs (phenanthrene, anthracene, fluoranthene, and benzo(a)pyrene) were reported above the freshwater ecological SAC, and the benzo(a)pyrene concentration also exceeded the drinking water and recreational SAC.

Despite the SAC exceedances, the Tier 1 risk assessment did not identify a trigger for remediation as risks were assessed to be low. However, further investigation of the site is required due to the occurrence of asbestos in fill and to better understand the potential impacts from PAHs in the groundwater.

Based on the data obtained during the DSI, further investigation of the site is required to supplement the existing data. This further investigation is currently underway at the date of this report, and the Sampling, Analysis and Quality Plan (SAQP) for the investigation is attached in Appendix I. The further investigation will confirm whether or not remediation is required. Should remediation be required, then a Remediation Action Plan (RAP) must be prepared for the Project. Notwithstanding, we are of the opinion that the DSI has provided adequate data to enable further refinement of the CSM and for JKE to be confident that the site can be made suitable for the activity via remediation, should the further investigation confirm that remediation is required.

We recommend the following:

- 1. Prepare an interim AMP to manage potential risks from asbestos in/on soil until the activity occurs;
- 2. Completion of further investigation (referred to above), together with an associated addendum/supplementary report presenting the results;
- 3. Preparation and implementation of a RAP, if the need for a RAP is confirmed in the addendum/supplementary report; and
- 4. Preparation and implementation of a construction-phase AMP.

Preliminary waste classifications are discussed in Section 9 of the report. Confirmatory waste classification assessment is required.

The conclusions and recommendations should be read in conjunction with the limitations presented in the body of this report.

Table of Contents

1	CLIEN	T SUPPLIED INTRODUCTION	1
	1.1	CLIENT PROVIDED SITE DESCRIPTION	1
	1.2	PROPOSED ACTIVITY DESCRIPTION	2
2	DSI IN	ITRODUCTION	4
	2.1	AIMS AND OBJECTIVES	4
	2.2	SCOPE OF WORK	5
3	SITE I	NFORMATION	6
	3.1	BACKGROUND	6
	3.2	SITE IDENTIFICATION	7
	3.3	SITE LOCATION AND REGIONAL SETTING	8
	3.4	SITE INSPECTION	8
	3.5	Surrounding Land Use	9
	3.6	Underground Services	9
4	GEOL	OGY AND HYDROGEOLOGY	10
	4.1	REGIONAL GEOLOGY	10
	4.2	Acid Sulfate Soil (ASS) Risk and Planning	10
	4.3	HYDROGEOLOGY	10
	4.4	RECEIVING WATER BODIES	11
5	REVIE	W AND UPDATE OF CONCEPTUAL SITE MODEL	12
	5.1	POTENTIAL CONTAMINATION SOURCES/AEC AND COPC	12
	5.2	MECHANISM FOR CONTAMINATION, AFFECTED MEDIA, RECEPTORS AND EXPOSURE PATHWAYS	13
6	SUMI	MARY SAMPLING, ANALYSIS AND QUALITY PLAN	15
	6.1	SAQP SUMMARY	15
	6.2	DEVIATIONS TO THE SAQP	15
	6.3	LABORATORY ANALYSIS	15
7	SITE A	SSESSMENT CRITERIA (SAC)	17
	7.1	Soil	17
	7.2	GROUNDWATER	19
8	RESU	LTS	22
	8.1	SUMMARY OF DATA (QA/QC) EVALUATION	22
	8.2	SUBSURFACE CONDITIONS	22
	8.3	Field Screening	22
	8.4	Soil Laboratory Results	23
	8.5	GROUNDWATER LABORATORY RESULTS	27
9	WAST	E CLASSIFICATION ASSESSMENT	30
	9.1	WASTE CLASSIFICATION OF FILL	30
	9.2	CLASSIFICATION OF NATURAL SOIL	30
10	DISCL	ISSION	31

	10.1	TIER 1 RISK ASSESSMENT AND REVIEW OF CSM	31
	10.2	DECISION STATEMENTS	33
	10.3	REVIEW OF CSM AND DATA GAPS	34
11	CONC	LUSIONS AND RECOMMENDATIONS	36
	11.1	MITIGATION MEASURES – REF REQUIREMENT	37
	11.2	EVALUATION OF ENVIRONMENTAL IMPACTS – REF REQUIREMENT	38
12	LIMIT	ATIONS	39

JKEnvironments

List of Tables

Table 3-1: Previous information summary	6
Table 3-2: Site Identification	7
Table 4-1: Summary of Subsurface Conditions encountered during previous JKE intrusive investigation	10
Table 5-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern	12
Table 5-2: CSM	13
Table 6-1: Details for Asbestos SAC	17
Table 7-2: Site Specific Soil Parameters – Coarse Soils	18
Table 7-3: Site Specific Soil Parameters – Fine Soils	18
Table 6-4: Waste Categories	19
Table 8-1: Summary of Field Screening	22
Table 8-2: Summary of Soil Laboratory Results – Human Health and Environmental (Ecological)	23
Table 8-3: Summary of Soil Laboratory Results Compared to CT and SCC Criteria	25
Table 8-4: Summary of Soil Laboratory Results Compared to TCLP Criteria	26
Table 8-5: Summary of 95% UCL calculations	27
Table 8-6: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)	27
Table 10-1: Data Gap Assessment	34
Table 11-1: Mitigation Measures Relating to DSI Findings	37

Attachments

Appendix A: Report Figures Appendix B: Laboratory Results Summary Tables Appendix C: Borehole Logs Appendix D: Laboratory Report(s) & COC Documents Appendix E: Report Explanatory Notes

Appendix F: Data (QA/QC) Evaluation

Appendix G: Field Work Documents

Appendix H: UCL Calculation Sheets

Appendix I: Guidelines and Reference Documents

Abbreviations

	/
Asbestos Fines/Fibrous Asbestos	AF/FA
Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Australian Drinking Water Guidelines	ADWG
Area of Environmental Concern	AEC
Australian Height Datum	AHD
Asbestos Management Plan	AMP
Acid Sulfate Soil	ASS
Before You Dig Australia	BYDA
Below Ground Level	BGL
Benzo(a)pyrene Toxicity Equivalent Factor	BaP TEQ
Bureau of Meteorology	BOM
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Cation Exchange Capacity	CEC
Cis-1,2-dichloroethene	cis-DCE
Combined Risk Value	CRV
Contaminated Land Management	CLM
Contaminant(s) of Potential Concern	CoPC
Chain of Custody	COC
Conceptual Site Model	CSM
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
NSW Department of Education	DoE
Ecological Investigation Level	EIL
Ecological Screening Level	ESL
Environment Protection Authority	EPA
Fibre Cement Fragment(s)	FCF
General Approval of Immobilisation	GAI
Georges River Local Environmental Plan	GRLEP
Health Investigation Level	HIL
Health Screening Level	HSL
International Organisation of Standardisation	ISO
JK Environments	JKE
JK Geotechnics	JKG
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Map Grid of Australia	MGA
National Association of Testing Authorities	ΝΑΤΑ
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	ОСР
Organophosphate Pesticides	OPP
Perchloroethylene (also known as tetrachloroethene)	PCE
Polycyclic Aromatic Hydrocarbons	ΡΑΗ
Polychlorinated Biphenyls	РСВ
Per-and Polyfluoroalkyl Substances	PFAS
Perfluorooctanoic Acid	PFOA
Perfluorooctanesulfonic Acid	PFOS
Perfluorohexane Sulfonate	PFHxS
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL
	•

Quality Assurance	QA
Quality Control	QC
Relative Level	RL
Remediation Action Plan	RAP
Review of Environmental Factors	REF
Relative Percentage Difference	RPD
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
State Environmental Planning Policy	SEPP
Site Specific Assessment	SSA
Source, Pathway, Receptor	SPR
Specific Contamination Concentration	SCC
Standard Penetration Test	SPT
Standing Water Level	SWL
Trichloroethene	TCE
Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH
Trip Spike	TS
Upper Confidence Limit	UCL
United States Environmental Protection Agency	USEPA
Virgin Excavated Natural Material	VENM
Vinyl Chloride	VC
Volatile Organic Compounds	VOC
World Health Organisation	WHO
Work Health and Safety	WHS
	1113
Units	

Litres	L
Metres BGL	mBGL
Metres	m
Millivolts	mV
Millilitres	ml or mL
Milliequivalents	meq
micro Siemens per Centimetre	μS/cm
Micrograms per Litre	μg/L
Milligrams per Kilogram	mg/kg
Milligrams per Litre	mg/L
Parts Per Million	ppm
Percentage	%
Percentage weight for weight	%w/w

1 CLIENT SUPPLIED INTRODUCTION

This Detailed Site Investigation (DSI) has been prepared to support the Review of Environmental Factors (REF) being prepared on behalf of the NSW Department of Education (DoE) for the proposed Kogarah Public School upgrade (the activity).

The purpose of the REF is to assess the potential environmental impacts of the activity prescribed by State Environmental Planning Policy (Transport and Infrastructure) 2021 (T&I SEPP) as "development permitted without consent" on land carried out by or on behalf of a public authority (NSW DoE) under Part 5 of the Environmental Planning and Assessment Act 1979 (EP&A Act). The activity is to be undertaken pursuant to Chapter 3, Part 3.4, Clause 3.37 of the T&I SEPP.

The purpose of this report is to make a detailed assessment of site contamination.

1.1 Client Provided Site Description

Kogarah Public School is located at 24B Gladstone Street, Kogarah and has area of 1.644ha per Detail Survey. The school is accommodated within the following allotments:

- Lots 1-3 DP 999122;
- Lot 1 DP 179779
- Lot 1 DP 667959
- Lot 2 DP 175247; and
- Lot A DP 391026.

The school site is irregular in shape with existing vehicular access and the car park provided from Gladstone Street along the south western boundary. Pedestrian access is provided from Gladstone Street and Princes Highway. The site accommodates eight (8) permanent buildings and number of modular school buildings with play areas largely confined to the central and north eastern portions of the site.

Development surrounding the school site includes:

- North: Residential flat building at 71 Regent Street, retail tenancies orientated to Princes Highway (39-43 Princes Highway) and a smaller residential flat building at No 41 Princes Highway;
- East: Princes Highway and further to a mix of commercial and mid-rise residential development;
- South: St Paul's Church complex comprising St Paul's Childcare Centre, St Paul's Anglican Church and a residential flat building located at 24-30 Gladstone Street; and
- West: A mix of single dwelling and residential flat building development with Regent Street beyond.

The site is zoned SP2 Educational Establishment in accordance with Georges River Local Environmental Plan 2021 (GRLEP).

An aerial image of the school site is provided in Figure 1 on the next page.

Figure 1: Aerial image of the site (Nearmap, 2024)

1.2 Proposed Activity Description

The proposed Kogarah Public School upgrade works include the following:

- Demolition of existing playground facilities and Covered Outdoor Learning Area (COLA) in addition to footings and services associated with former demountable buildings;
- Tree removal;
- Construction of a new three storey Classroom building and attached amenities facilities;
- Construction of a single storey Hall with attached Covered Outdoor Learning Area;
- New pedestrian pathway connections providing access throughout the site;
- Service upgrades; and
- Site landscaping works.

Any works relating to the existing demountable classrooms will be undertaken via a separate planning pathway. Figure 2 below presents an extract of the proposed Site Plan.

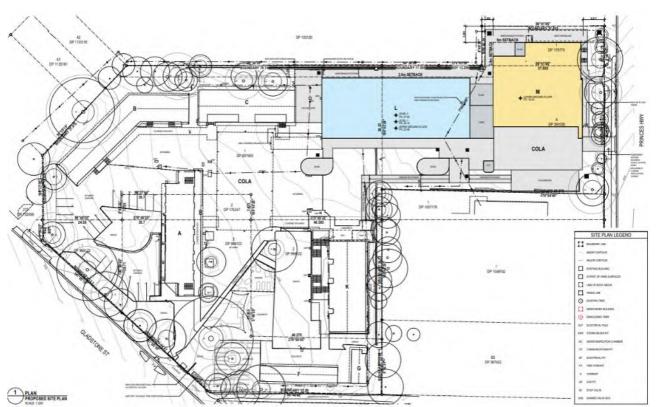


Figure 2: Extract of proposed Site Plan (Fulton Trotter, 2024)

2 DSI INTRODUCTION

DoE ('the client') commissioned JK Environments (JKE) to undertake a Detailed Site Investigation (DSI) for the proposed alterations and additions at Kogarah Public School, 24B Gladstone Street, Kogarah, NSW. The purpose of the investigation was to characterise the site contamination conditions in order to assess the risks in relation to contamination and establish whether remediation is required. For the purpose of the DSI 'the site' includes the area where the activity will occur, as shown on Figures 1 and 2 in Appendix A. The site is located in the eastern portion of the wider school property.

This report has been prepared to support the REF for proposed alterations and additions to Kogarah Public School, with regards to Chapter 4 of State Environmental Planning Policy (Resilience and Hazards) 2021¹ (formerly known as SEPP55).

A geotechnical investigation was undertaken in conjunction with this DSI by JK Geotechnics (JKG). The results of the geotechnical investigation are presented in a separate report (Ref: 32976LT1rpt)². This report should be read in conjunction with the JKG report.

A Sampling Analysis Quality Plan (SAQP) was prepared for this investigation (Ref: E32976PTrpt3-SAQP, dated 6 January 2025)³. The SAQP is attached in Appendix G.

JKE have previously undertaken a Phase 1 Preliminary Site Investigation (desktop), and a Phase 2 Preliminary Intrusive Investigation at the site and within the wider school. WSP has also previously prepared a Preliminary Desktop Site Investigation at the site. A summary of this information has been included in Section 3.

2.1 Aims and Objectives

The primary aim of the DSI was to characterise the soil and groundwater contamination conditions in accessible areas in order to assess site risks in relation to contamination and establish whether remediation is required. A secondary aim of the investigation was to provide preliminary waste classification data for off-site disposal of soil waste which may be generated during the proposed development works.

The objectives of the DSI were to:

- Assess the soil and groundwater contamination conditions via implementation of a sampling and analysis program that considers the potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC) identified in the PSI;
- Document an iteration and review of the conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;

¹ State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)

²JKG, (2025). Report to NSW Department of Education on Geotechnical Investigation for Proposed School Upgrade at Kogarah Public School, 24B Gladstone Street, Kogarah, NSW (referred to as JKG report).

³ JKE, (2025). Report to NSW Department of Education on Sampling Analysis and Quality Plan for Detailed Site Investigation at Kogarah Public School, 24B Gladstone Street, Kogarah, NSW (Ref: E32976PTrpt3-SAQP, dated 6 January 2025) (referred to as SAQP).

- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether further intrusive investigation and/or remediation is required.

2.2 Scope of Work

The investigation was undertaken generally in accordance with a JKE proposal (Ref: 32976LTrev1prop) of 13 December 2024 and written acceptance from the client. The scope of work included the following:

- Review of site information, including background and site history information from various sources outlined in the report;
- Preparation of a CSM;
- Design and implementation of a SAQP. The SAQP was prepared prior to the commencement of the DSI and is attached in Appendix G;
- Interpretation of the analytical results against the adopted Site Assessment Criteria (SAC);
- Data Quality Assessment; and
- Preparation of a report including a Tier 1 risk assessment.

The scope of work was undertaken with reference to the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)⁴, other guidelines made under or with regards to the Contaminated Land Management Act (1997)⁵ and SEPP Resilience and Hazards 2021. A list of reference documents/guidelines is included in the appendices.

⁴ National Environment Protection Council (NEPC), (2013). *National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).* (referred to as NEPM 2013)

⁵ Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

3 SITE INFORMATION

3.1 Background

JKE undertook previous investigations at the site and wider school property in 2020, and WSP undertook a previous investigation in 2023. The western portion of the wider school property does not form part of the site for the purpose of the DSI (see Figure 1 in Appendix A). A summary of relevant information from the previous investigations is outlined in the table below:

	Summary of relevant information
Report Phase 1 Desktop	The desktop was undertaken across the wider school property, including the site, and
Assessment, JKE	included: review of background and historical information; a walkover site inspection; and
20206	preparation of a report presenting the results of the assessment, including a CSM.
	Site history information indicated that residential style structures had been present on the site, and one of the lots within the site had been utilised as a bus depot. The site and wider school property was progressively developed into the primary school site from 1956. During this time, demolition of the original site structures occurred, along with potential filling of the site. The age of the former and existing buildings indicated the potential for hazardous building materials to be present.
	During the JKE site inspection, a fibre cement fragment (FCF) of suspected asbestos containing material (ACM) was identified on the site, and fill material (i.e. imported/disturbed soils) was also observed at the site surface in several areas. The location of the FCF (identified as FCF1) is shown on Figure 2 in Appendix A.
	 Based on the scope of work undertaken for desktop, the CSM identified the following potential contamination sources/areas of AEC: Fill material - It was considered possible that minor historical filling had occurred to achieve the existing levels. The fill may have been imported from various sources and could be contaminated. It was also considered possible that fill was generated from the native (on-site soils) and was mixed with debris during various phases of redevelopment; Historical use as a bus depot - Historical title records indicated that the site was owned by a company providing bus service operations and aerial photographs confirmed buses were being stored on this section of the site. Fuels, oils and solvents (e.g. toluene/mineral spirit/thinners) may have been used during this site use; Use of pesticides - Pesticides may have been used beneath the buildings and/or around the site; Hazardous building materials (i.e. asbestos containing material - ACM) - Hazardous building materials may also be present in the existing buildings/structures on site. Hazardous building materials can also occur in fill due to historical demolition activities; and Up-gradient off-site historical dry cleaners and motor garage/service stations – historical business directories indicated that several of these businesses were located upgradient of the site and may pose a risk to the site via migration of contaminated groundwater.
	The desktop recommended undertaking a preliminary intrusive investigation to make an initial assessment of contamination-related risks and to inform the design of a DSI.

Table 3-1: Previous information summary

⁶ JKE, (2020a). Report to School Infrastructure NSW on Phase 1 Desktop Assessment for Proposed School Redevelopment (SINSW00330/19) at Kogarah Public School, 24B Gladstone Street, Kogarah, NSW. (Ref: E32976PTrpt-KPS, dated 28 February 2020) (referred to as desktop)

Report	Summary of relevant information
Phase 2 Preliminary Intrusive Investigation, JKE 2020 ⁷	The intrusive investigation included a review of existing project information, a site inspection, and soil sampling from 10 boreholes, of which four were located on the current site, including BH107 to BH110 inclusive (refer to Figure 2 in Appendix A). Fill material was encountered to depths of between approximately 0.2m below ground level (BGL) and 1.7m BGL, underlain by natural residual sandy soils. The fill contained inclusions of igneous and ironstone gravel, glass fragments, sand and root fibres. A selection of soil samples was analysed for the CoPC identified in the CSM. FCF1 that was collected by JKE during the desktop was also analysed and was found to contain asbestos. Based on the data from the intrusive investigation, JKE was of the opinion that the potential risk of widespread subsurface contamination in the intrusive investigation area was low as the soil samples analysed did not identify contamination that was assessed to pose an unacceptable risk. FCF1 was non-friable ACM. The source of the asbestos appeared to be a fibre cement board at the base of the neighbouring fence and was considered unlikely to be associated with on-site soils in that vicinity. The ACM was removed and no further fragments were identified in the area. The intrusive investigation report recommended that the investigation data obtained should be supplemented via a detailed investigation in order to fully characterise the contamination
Site Contamination Services –	conditions at the site and establish whether remediation is required. The WSP PSI comprised a desktop study to review general site details, site environmental setting and history, regulatory databases and client provided reports and information. The site history review was limited to historical aerial photographs and publicly available information on applications.
Preliminary Desktop Site Investigation, WSP 2023 ⁸	 information on online databases. Based on the scope of work undertaken for desktop, the CSM identified the following potential contamination sources/AEC: Uncontrolled fill materials potentially used historically to raise or level portions of the site; Historical or recent waste dumping; Potential ACM or hazardous building materials associated with imported materials or demolished structures; and
	 Pesticides used historically and recently to maintain the site. The report concluded that the site presented a low to moderate risk of inground contamination due to the potential for uncontrolled fill and poor demolition practices associated with historic development and demolition of residential buildings on the site. It is noted that the investigation did not include a site inspection.

3.2 Site Identification

Table 3-2: Site Identification	
Site Address:	24B Gladstone Street, Kogarah, NSW

⁷ JKE, (2020b). Report to School Infrastructure NSW on Phase 2 Preliminary Intrusive Investigation for Proposed School Redevelopment (SINSW00330/19) at Kogarah Public School, 24B Gladstone Street, Kogarah, NSW. (Ref: E32976PTrpt2-KPS, dated 8 May 2020) (referred to as intrusive investigation)

⁸ WSP, (2023). Report to School Infrastructure NSW on Site Contamination Services – Preliminary Desktop Site Investigation, Kogarah Public School. (Project Ref: PS206292, report dated 7 December 2023) (referred to as WSP PSI)

Lot & Deposited Plan:	Lot 1 in DP179779, Lot A in DP391026, and part of Lot 1 in DP667959
Current Land Use:	Primary School (Kindergarten to Year 6)
Proposed Land Use:	Continued use as a Primary School
Local Government Area:	Georges River Council
Current Zoning:	SP2: Infrastructure
Site Area (m ²) (approx.):	4,375
Geographical Location	Latitude: -33.9618430
(decimal degrees) (approx.):	Longitude: 151.1370970
Site Plans:	Appendix A

3.3 Site Location and Regional Setting

The site is located in the eastern portion of the existing Kogarah Public School property, which itself is in a mixed-use area of Kogarah and is bound by the Princes Highway to the east and Gladstone Street to the west. The site is located approximately 535m to the south-west of Muddy Creek and 1.7km to the west of Botany Bay.

The site is situated in gently undulating regional topography, with the site itself gently sloping towards the east at approximately 1° to 2°. Parts of the site appear to have been levelled to account for the slope and accommodate the existing development.

3.4 Site Inspection

A walkover inspection of the site was undertaken by JKE on 15 January 2025. A summary of the inspection findings is outlined below:

- At the time of the inspection, the site comprised a COLA, over asphaltic concrete paved playground in the west of the site. The east of the site comprised soft-fall and artificial grass covered playground areas with garden and landscaped areas around the boundaries of the site. A small toilet block and goods store was also positioned along the southern boundary, and construction fencing was positioned along the central north of the site in an east-west alignment, due to recent demolition activities (removal of demountable classrooms) in this section of the site;
- Where the demolition/removal had taken place in the north of the site, exposed soils and debris from demolition/removal activities were observed at the site surface;
- During the inspection, an unsealed bag of FCF/suspected ACM was identified in the central north of the site. The bag was assumed to be associated with an emu-pick following demolition removal works. JKE sealed the bag and informed the client of this find at the time of the fieldwork;
- There were no other visible or olfactory indicators of contamination observed during the inspection;
- Fill was observed at the ground surface in areas of exposed soils across the site. Imported material/fill was considered likely to be present in garden beds and as a result of general (minor) levelling works across the site; and

 Medium to large trees were observed around the site and a number of grass-covered sections of the site were also observed. Grass coverage was generally good in the unpaved areas, with the exception of some areas beneath large trees and isolated areas of the playground (generally around the interface with pavements).

3.5 Surrounding Land Use

During the site inspection, JKE observed the following land uses in the immediate surrounds:

- North high-density high-rise residential apartment buildings, a construction site and Regent Street;
- South St Paul's Anglican Church (heritage), children's centre (church run);
- East Princes Highway and low-density residential houses; and
- West Kogarah Public School (main buildings).

JKE did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

3.6 Underground Services

The 'Before You Dig Australia' (BYDA) plans were reviewed for the investigation in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration. Major services were not identified that would be expected to act as preferential pathways for contamination migration.

4 GEOLOGY AND HYDROGEOLOGY

4.1 Regional Geology

Regional geological information reviewed as part of the previous investigations indicated that the site is underlain by underlain by Triassic aged deposits of medium to coarse-grained quartz sandstone, and very minor shale and laminate lenses (Hawksbury Sandstone).

A summary of the subsurface conditions encountered during the previous intrusive investigation is present in the table below:

Profile	Description
Pavement	Asphaltic Concrete (AC) pavement was encountered at the surface in BH109 and was approximately 20mm in thickness.
Fill	Fill was encountered at the surface or beneath the pavement in all boreholes and extended to depths of between approximately 0.2mBGL to 1.7mBGL. The fill typically comprised silty sandy clay, sandy silt, clayey sandy gravel or silty sand with inclusions of igneous and ironstone gravel, glass fragments, sand and root fibres.
	Neither staining nor odours were encountered in the fill material during the fieldwork. No FCF/ACM was encountered in the fill material during the fieldwork.
Natural Soil	Natural clayey or sandy residual soil was encountered beneath the fill in BH107 and BH108 and extended to depths of between approximately 1.6mBGL and 3.2mBGL. BH107 was terminated in the natural soils at a depth of 3.2mBGL.
	Neither staining nor odours were encountered in the natural soils during the fieldwork.
Bedrock	Sandstone bedrock was encountered beneath the fill material or natural soils in BH108, BH109 and BH110 from depths of 0.2m to 1.6mBGL.
Groundwater	Groundwater seepage was encountered in boreholes BH107 and BH110 at depths of approximately 1.0mBGL and 3.5mBGL during drilling. All other boreholes remained dry during and on completion of drilling.

Table 4-1: Summary of Subsurface Conditions encountered during previous JKE intrusive investigation

4.2 Acid Sulfate Soil (ASS) Risk and Planning

The site is not located in an acid sulfate soil (ASS) risk area according to the risk maps prepared by the Department of Land and Water Conservation. (1997)⁹.

The site is not mapped as being within an ASS risk area in the Georges River Local Environmental Plan 2021.

4.3 Hydrogeology

Hydrogeological information reviewed for the previous investigations indicated that the regional aquifer on-site and in the areas immediately surrounding the site includes porous, extensive aquifers of low to

⁹ Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map (Series 9130N3, Ed 2)

moderate productivity. There was a total of 521 registered bores within the report buffer of 2,000m. In summary:

- The nearest registered bore was located approximately 400m from the site. This was utilised for domestic purposes. The nearest downgradient bore registered for domestic uses was located over 1,500m to the north of the site;
- The majority of the bores were registered for domestic purposes;
- The drillers log information from the closest (within 500m) registered bores typically identified fill and/or sand and clay soil to depths of 3.65m-6.50m. Standing water levels (SWLs) in the bores ranged from 1.5m below ground level (BGL) to 3.0mBGL; and
- Groundwater is likely to be encountered at depths ranging from 3m to 5m below existing surface levels based on previous JKG investigations of nearby properties.

Based on the above subsurface conditions at the site, it is expected to consist of relatively low permeability (residual) soils overlying relatively shallow bedrock. Abstraction and use of groundwater at the site or in the immediate surrounds may be viable as indicated by the number of registered monitoring bores, however the use of groundwater is not proposed as part of the development. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur. Notwithstanding, we have conservatively considered consumption of groundwater as part of this DSI.

Considering the local topography and surrounding land features, JKE would expect groundwater to flow towards the north-east.

4.4 Receiving Water Bodies

Surface water bodies were not identified in the immediate vicinity of the site. The closest surface water bodyis Muddy Creek, a tributary of the Cooks River located approximately 535m to the north-east of the site. This is down-gradient from the site, and is considered to be a potential receptor.

5 REVIEW AND UPDATE OF CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and the review of site history information. Reference should also be made to the figures attached in the appendices.

5.1 Potential Contamination Sources/AEC and CoPC

The potential contamination sources/AEC and CoPC are presented in the following table:

Source / AEC	CoPC
Fill material– The site has been historically filled to achieve the existing levels. The fill may have been imported from various sources and could be contaminated. It is also possible that fill was generated from the native (on-site soils) and was mixed with debris during various phases of redevelopment.The previous investigation identified fill material to depths of 0.15mBGL to 1.7mBGL.During the inspection, a bag of FCF/ACM was identified. It was unclear if this was associated with recent demolition works onsite or surficial FCF/ACM associated with imported fill.	Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc), petroleum hydrocarbons (referred to as total recoverable hydrocarbons – TRHs), benzene, toluene, ethylbenzene and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), polychlorinated biphenyls (PCBs) and asbestos.
Historical bus depot land use – Historical title records indicated that the south-eastern portion of the site was owned by a company providing bus service operations and aerial photographs confirmed buses were being stored on this section of the site. Fuels, oils and solvents may have been used during this site use.	Heavy metals, TRH, and BTEX (solvents such as toluene and mineral spirits would be detectable via the TRH and BTEX analysis).
<u>Use of pesticides</u> – Pesticides may have been used beneath the buildings and/or around the site.	Heavy metals and OCPs.
 <u>Hazardous Building Material</u> – Hazardous building materials may be present as a result of former building and demolition activities. These materials may also be present in the existing buildings/ structures on site. Previous investigations identified surficial FCF/ACM on the southern boundary of the site. During the inspection, a bag of FCF/ACM was identified. It was unclear if this was associated with recent demolition works onsite or surficial FCF/ACM associated with imported fill. 	Asbestos, lead and PCBs.

Source / AEC	СоРС
Off-site Area 1 (Dry Cleaners) – Historical business directories	Per- and polyfluoroalkyl substances (PFAS), TRHs
indicated that several dry cleaner businesses had been/were	and VOCs, including tetrachloroethene (also known
located upgradient of the site (south-west) of the site.	as perchloroethylene - PCE) and the breakdown products trichloroethene (TCE), cis-1,2-
Impacts to the site are most likely to occur via migration of contaminated groundwater.	dichloroethene (cis-DCE) and vinyl chloride (VC).
Off-site Area 2 (Mechanics/Service Stations) – Historical	Heavy metals (lead), TRH and BTEX.
business directories indicated that at least two motor	
mechanics/service station businesses had been/were located	
up-gradient (south/south-west) of the site.	
Impacts to the site are most likely to occur via migration of contaminated groundwater.	

5.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 5-2: CSM	
Potential mechanism for contamination	The potential mechanisms for contamination are most likely to include 'top-down' impacts and spills. There is a potential for sub-surface releases to have occurred if deep fill (or other buried industrial infrastructure) is present, although this is considered to be the least likely mechanism for contamination. The mechanisms for contamination from off-site sources could have occurred via 'top down' impacts and spills, or sub-surface release. Impacts to the site could occur via the migration of contaminated groundwater.
Affected media	Soil and groundwater have been identified as potentially affected media.
	At this stage, soil vapour is not being investigated. This is to be considered further in the event that potential vapour risks are identified via the soil and groundwater analysis.
Receptor identification	Human receptors include site occupants/users (including adults and children), construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users, and groundwater users.
	Ecological receptors include terrestrial organisms and plants within unpaved areas (including the proposed landscaped areas), and ecology in down-gradient water bodies.
Potential exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene, VOCs and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and future use of the site. Potential exposure pathways for ecological receptors include direct/primary contact and ingestion.
	Exposure during future site use could occur via direct contact with soil in unpaved areas such as gardens, inhalation of airborne asbestos fibres during soil disturbance, or inhalation of vapours within enclosed spaces such as buildings.

	Exposure to groundwater may occur in Muddy Creek and/or the Cooks River through direct migration.
Potential exposure mechanisms	 The following have been identified as potential exposure mechanisms for site contamination: Vapour intrusion into the proposed building (either from soil contamination or volatilisation of contaminants from groundwater); Contact (dermal, ingestion or inhalation) with exposed soils in landscaped areas and/or unpaved areas; Contact with groundwater during construction; Migration of groundwater off-site and into nearby water bodies, including aquatic ecosystems and those being used for recreation; and Migration of groundwater off-site into areas where groundwater is being utilised as a resource (i.e. for domestic or irrigation).
Presence of preferential pathways for contaminant movement	Local services (i.e. those not shown on the DBYD plans) such as stormwater pipe trenches could act as preferential pathways for contaminant migration. This could occur through fill soil and/or via groundwater/seepage. This would be dependent on the contaminant type and transport mechanisms.

6 SUMMARY SAMPLING, ANALYSIS AND QUALITY PLAN

6.1 SAQP Summary

JKE prepared a SAQP for the DSI, which is attached in Appendix G. The SAQP is summarised as follows:

- Data Quality Objectives (DQOs) were developed to define the type and quality of data required to achieve the project objectives outlined in Section 2.1;
- Soil samples were obtained from 15 grid-based locations (BH201, BH203, and BH207 to BH219) as shown on Figures 2 and 3 in Appendix A;
- Soil samples were obtained using a combination of hand tools and drill rig on 15, 16 and 31 January 2025;
- Three monitoring wells were installed on in BH203 (MW203), BH207 (MW207), and BH208 (MW208), as shown in Figures 2 and 3 in Appendix A. The wells were generally positioned to provide site coverage;
- The monitoring well construction details are documented on the borehole logs for BH203, BH207, and BH208 attached in the appendices;
- MW203 and MW207 were developed on 16 January 2025, and MW208 was developed on 11 February 2025;
- The monitoring wells were allowed to recharged for between 3 to 18 days after installation. Groundwater samples for the DSI were obtained on 13 February;
- The groundwater field monitoring records and calibration data are attached in Appendix G; and
- The relative heights for all monitoring wells were surveyed using a GPS unit on 11 February 2025. This information is documented on the borehole logs and groundwater sampling field sheets attached in the appendices.

6.2 Deviations to the SAQP

The following deviations to the SAQP are noted:

- The fieldwork was split into two mobilisations due to archaeological works which were not completed for the northern area including BH208, BH213 and BH218, or the western area including BH201 and BH209 at the time of commencement of the fieldwork on 15 January. The second mobilisation was undertaken and completed on 31 January 2025;
- The fill was not penetrated in BH210 to BH212 and BH214 to BH217 and BH219, due to limitations associated with the use of hand equipment and/or obstructions in fill; and
- Asbestos bulk quantification/field screening was not undertaken for all fill profiles and the sample volumes for a limited number of samples was below 10L. The lack of sample or low volume was generally due to the use of augers which limited the sample return particularly in subsurface fill profiles.

Please refer to the SAQP attached in the appendices for further information.

6.3 Laboratory Analysis

Samples were analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. Reference should be made to the laboratory reports attached in the appendices for further details.

Table 5-1: Laboratory Details

Samples	Laboratory	Report Reference
All primary samples and field QA/QC samples including (intra-laboratory duplicates, trip blanks, trip spikes and field rinsate samples)	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	370762, 370762-A, 371803, 371803-A, and 372949
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)	MGA0261

It is noted that the groundwater samples were incorrectly labelled on the chain of custody (COC) as the borehole reference rather than the monitoring well reference, i.e. BH203 instead of MW203, BH207 instead of MW207 and BH208 instead of MW208. This was corrected at the laboratory as reported in Envirolab report 372949.

7 SITE ASSESSMENT CRITERIA (SAC)

The SAC were derived from the NEPM 2013 and other guidelines as discussed in the following sub-sections. The guideline values for individual contaminants are presented in the attached report tables and further explanation of the various criteria adopted is provided in the appendices.

7.1 Soil

Soil data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

7.1.1 Human Health

- Health Investigation Levels (HILs) for a 'residential with accessible soils' exposure scenario (HIL-A). These SAC also apply to primary schools;
- Health Screening Levels (HSLs) for a 'low-high density residential' exposure scenario (HSL-A & HSL-B), which also apply to primary schools. HSLs were calculated based on conservative assumptions including a 'sand' type and a depth interval of 0m to 1m;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)¹⁰; and
- Asbestos was assessed against the HSL-A criteria. A summary of the asbestos criteria is provided in the table below:

Guideline	Applicability
Asbestos in Soil	Applicability The HSL-A criteria were adopted for the assessment of asbestos in soil. The SAC adopted for asbestos were derived from the NEPM 2013 and are based on the Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2021) ¹¹ . The SAC include the following: • No visible asbestos at the surface/in the top 10cm of soil; • <0.01% w/w bonded asbestos containing material (ACM) in soil; and • <0.01% w/w asbestos fines/fibrous asbestos (AF/FA) in soil. Concentrations for bonded ACM concentrations in soil are based on the following equation which is presented in Schedule B1 of NEPM (2013): % w/w asbestos in soil = % asbestos content x bonded ACM (kg) Soil volume (L) x soil density (kg/L) However, we are of the opinion that the actual soil volume in a 10L bucket varies considerably due to the presence of voids, particularly when assessing cohesive soils. Therefore, each bucket sample was weighed using electronic scales and the above equation was adjusted as follows (we note that the units have also converted to grams):

Table 6-1: Details for Asbestos SAC

¹⁰ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - *Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document*

¹¹ Western Australian (WA) Department of Health (DoH), (2021). *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia.* (referred to as WA DoH 2021)

Guideline	Applicability	
	% w/w asbestos in soil =	% asbestos content x bonded ACM (g)
		Soil weight (g)

7.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for an 'urban residential and public open space' (URPOS) exposure scenario. These have only been applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene has been increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines¹²;
- ESLs were adopted based on the soil type;
- EILs for selected metals were generally calculated based on the most conservative added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013) and published ambient background concentration (ABC) values presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹³; and
- Averaged site-specific soil parameters for pH and cation exchange capacity (CEC) were used for EILs for selected metals in BH203 (0.1-0.2m), BH211 (0.2-0.3m), BH214 (0.3-0.4m) and BH217 (0.2-0.3m) for coarse soils. These data have been tabulated below for reference and were used to select the ACL values presented in Schedule B(1) of NEPM (2013) to sum with the published ABC presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995). This method is also considered to be adequate for the Tier 1 screening; and
- Site-specific soil parameters for pH and cation exchange capacity (CEC) were used for EILs for selected metals in BH210 (0.55-0.6m) for fine soils. These data have been tabulated below for reference and were used to select the ACL values presented in Schedule B(1) of NEPM (2013) to sum with the published ABC presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995). This method is also considered to be adequate for the Tier 1 screening.

Location	Depth	Material type	рН	CEC
BH203	0.1-0.2	Fill: Silty sand	9.1	10
BH211	0.2-0.3	Fill: Silty sand	7.7	7.2
BH214	0.3-0.4	Fill: Silty sand	6.9	3.9
BH217	0.2-0.3	Fill: Silty sand	7.9	13
		Average	7.9	8.53

Table 7-2: Site Specific Soil Parameters – Coarse Soils

Table 7-3: Site Specific Soil Parameters – Fine Soils

Location	Depth	Material type	рН	CEC
BH210	0.55-0.6	Fill: Silty sandy clay	7.7	11

¹² Canadian Council of Ministers of the Environment, (1999). *Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)* (referred to as the Canadian Soil Quality Guidelines)

¹³ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4.* Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

7.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) were considered.

7.1.4 Waste Classification

Data for the waste classification assessment were assessed in accordance with the Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹⁴ as outlined in the following table:

Category	Description
General Solid Waste (non-putrescible)	 If Specific Contaminant Concentration (SCC) ≤ Contaminant Threshold (CT1) then Toxicity Characteristics Leaching Procedure (TCLP) not needed to classify the soil as general solid waste; and If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as general solid waste.
Restricted Solid Waste	• If SCC \leq CT2 then TCLP not needed to classify the soil as restricted solid waste; and
(non-putrescible)	• If TCLP \leq TCLP2 and SCC \leq SCC2 then treat as restricted solid waste.
Hazardous Waste	 If SCC > CT2 then TCLP must be undertaken to classify the soil as hazardous waste; and If TCLP > TCLP2 and/or SCC > SCC2 then treat as hazardous waste.
Virgin Excavated Natural Material (VENM)	 Natural material (such as clay, gravel, sand, soil or rock fines) that meet the following: That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; That does not contain sulfidic ores or other waste; and Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette.

Table 6-4: Waste Categories

7.2 Groundwater

Groundwater data were compared to relevant Tier 1 screening criteria in accordance with NEPM (2013), following an assessment of environmental values in accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (2007)¹⁵. Environmental values for the DSI include aquatic ecosystems, human uses (consumption, incidental contact and recreational water use), and human-health risks in non-use scenarios (vapour intrusion).

It is noted that the PFAS National Environmental Management Plan (NEMP) Version 2.0 2020¹⁶ was amended in early 2025. The assessment of the PFAS data was undertaken with regards to the NEPM 2020, rather than NEMP 2025. However, a high-level review of the related SAC indicated that the applicable SAC

¹⁴ NSW EPA, (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* (referred to as Waste Classification Guidelines 2014)

 ¹⁵ NSW Department of Environment and Conservation, (2007). *Guidelines for the Assessment and Management of Groundwater Contamination*.
 ¹⁶ Heads of EPAs Australia and New Zealand (HEPA). PFAS National Environmental Management Plan Version 2.0 - January 2020 (referred to as NEMP 2020)

remain unchanged between the two versions of the NEMP, in the context of those SAC used for this investigation.

7.2.1 Human Health

- The NEPM (2013) HSLs were not strictly applicable for this project as the bedrock at the site was encountered at groundwater was recorded at depths of 0.4 to 1.4mBGL (i.e. shallower than 2m). On this basis, JKE has undertaken a site-specific assessment (SSA) for the Tier 1 screening of human health risks posed by volatile contaminants in groundwater. The assessment included selection of alternative Tier 1 criteria that were considered suitably protective of human health. These criteria are based on drinking water guidelines and have been referred to as HSL-SSA. The criteria were based on the following (as shown in the attached report tables):
 - Australian Drinking Water Guidelines 2011 (updated 2021)¹⁷ for BTEX compounds and selected VOCs;
 - World Health Organisation (WHO) document titled Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality (2008)¹⁸ for petroleum hydrocarbons. We have conservatively adopted the value of 100µg/L for TRH F1 and F2;
 - USEPA Region 9 screening levels for naphthalene (threshold value for tap water); and
 - The use of the laboratory PQLs for other contaminants where there were no Australian guidelines; and
- The ADWG 2011 were multiplied by a factor of 10 to assess potential risks associated with incidental/recreational-type exposure to groundwater (e.g. within down-gradient water bodies, with bore water used for irrigation, or with seepage water during construction). These have been deemed as 'recreational' SAC;
- The drinking water quality guideline value was adopted for the PFAS assessment based on Table 1 in the NEMP 2020;
- The recreational water quality guideline value was adopted for the PFAS assessment based on Table 1 in NEMP 2020; and
- ADWG 2011 criteria was adopted as screening criteria for consumption of groundwater.

7.2.2 Environment (Ecological - aquatic ecosystems)

Groundwater Investigation Levels (GILs) for 95% protection of freshwater species were adopted based on the Default Guideline Values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018)¹⁹. The 99% trigger values were adopted where required to account for bioaccumulation. Low and moderate reliability trigger values were also adopted for some contaminants where high-reliability trigger values don't exist.

¹⁷ National Health and Medical Research Council (NHMRC), (2021). *National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011* (referred to as ADWG 2011)

¹⁸ World Health Organisation (WHO), (2008). *Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality* (referred to as WHO 2008)

¹⁹ Australian and New Zealand Governments (ANZG), (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia (referred to as ANZG 2018)

The ecological (interim freshwater) water quality guidelines will be adopted for PFAS assessment based on NEMP 2020, based on 95% protection (slightly to moderately disturbed systems).

8 RESULTS

8.1 Summary of Data (QA/QC) Evaluation

The data evaluation is presented in the appendices. In summary, JKE is of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

8.2 Subsurface Conditions

A summary of the subsurface conditions encountered during the investigation is presented in the following table. Reference should be made to the borehole logs attached in the appendices for further details.

Profile	Description
Pavement	Asphaltic concrete pavement was encountered at the surface in BH203, BH210, BH211, BH212, and BH214, between approximately 50mm to 100mm in thickness.
Fill	Fill was encountered at the surface or immediately beneath the pavement in all locations and extended to depths of approximately 0.2mBGL to 1.4mBGL. BH209 to BH217 and BH219 were terminated in the fill soil as a maximum depth of 1.4mBGL.
	The fill typically comprised of silty sand, silty sandy clay, gravel, gravelly sand, sandy clay, and silty sandy gravel with inclusions of igneous, ironstone, and sandstone gravel, plastic, glass, tile, metal and brick fragments, slag, ash, wood and root fibres.
	Neither staining nor odours were encountered in the fill material during fieldwork. No FCF or ACM was encountered in the fill material during the fieldwork.
Bedrock	Sandstone bedrock was encountered beneath the fill material in BH201, BH203, BH207, BH208 and BH218.
	Neither staining nor odours were recorded in the bedrock during fieldwork.
Groundwater	Groundwater seepage was encountered in boreholes BH201, BH209, BH212, BH214, BH216 and BH219 at depths of approximately 0.4mBGL to 0.8mBGL.
	All other boreholes remained dry during and on completion of drilling.

Table 7.1: Summary of Subsurface Conditions

8.3 Field Screening

A summary of the field screening results is presented in the following table:

Table 8-1: Summary of Field Screening						
Aspect	Details					
PID Screening of	PID soil sample headspace readings are presented in attached report tables and the COC					
Soil Samples for	documents attached in the appendices. The results ranged from 0ppm to 1.8ppm equivalent					
VOCs	isobutylene. These results indicate a lack of significant PID detectable VOCs and aligned with other observations in the field such as no staining and odours.					

Table 8-1: Summary of Field Screening

Aspect	Details
Bulk Screening for Asbestos	The bulk field screening results are summarised in the attached report Table S5. No FCF/ACM was encountered in the bulk screening samples and all results were below the SAC.
Groundwater Depth & Flow	The relative heights of the ground surface at each monitoring well location were recorded using a GPS and the relative levels (RLs) of groundwater in each well were calculated based of the SWLs.
	A contour plot was prepared for the groundwater flow direction using Surfer v8.08 (Surface Mapping Program) as shown on Figure 4. Groundwater flow generally occurs in a down gradient direction perpendicular to the groundwater elevation contours. The contour plot indicates that groundwater generally flow towards the north, which is generally consistent with expectations based on the topography, and down-gradient water bodies.
Groundwater Field Parameters	 Field measurements recorded during sampling were as follows: pH ranged from 4.90 to 5.22; EC ranged from 941μS/cm to 1,385μS/cm; Eh ranged from 64.9mV to 180.7mV; and DO ranged from 1.0mg/L to 5.7mg/L.
	The PID readings in the monitoring well headspace recorded during sampling ranged from 0ppm in MW203 and MW207, and 1ppm in MW208.
LNAPLs petroleum hydrocarbons	Phase separated product (i.e. LNAPL) was not detected using the interphase probe during groundwater sampling.

8.4 Soil Laboratory Results

The soil laboratory results were assessed against the SAC presented in Section 7.1. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

8.4.1 Human Health and Environmental (Ecological) Assessment

Table 8-2: Summa	ry of S	oil Laboratory Results -	– Human Health	and Environment	al (Ecological)

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
Arsenic	25	10	0	0	-
Cadmium	25	0.5	0	NSL	-
Chromium (total)	25	22	0	0	-
Copper	25	260	0	1	The copper concentration of 260mg/kg reported in BH214 (0.3- 0.4m) exceeded the ecological SAC of 220mg/kg.
Lead	25	290	0	0	-
Mercury	25	0.8	0	NSL	-

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
Nickel	25	33	0	0	-
Zinc	25	450	0	0	-
Total PAHs	25	50	0	NSL	-
Benzo(a)pyrene	25	3.5	NSL	0	
Carcinogenic PAHs (as BaP TEQ)	25	5	2	NSL	The carcinogenic PAHs concentrations of 4.9mg/kg and 5mg/kg reported in BH208 (0.45- 0.55m) and BH211 (0.2-0.3m) respectively, exceeded the health- based SAC of 3mg/kg.
Naphthalene	25	<1	0	NSL	-
DDT+DDE+DDD	16	<0.1	0	NSL	-
DDT	16	<0.1	NSL	0	-
Aldrin and dieldrin	16	<0.1	0	NSL	-
Chlordane	16	<0.1	0	NSL	-
Heptachlor	16	<0.1	0	NSL	-
Chlorpyrifos (OPP)	16	<0.1	0	NSL	-
PCBs	16	<.01	0	NSL	-
TRH F1	25	<25	0	0	-
TRH F2	25	65	0	0	-
TRH F3	25	460	0	0	The TRH F3 concentrations of between 370mg/kg and 460mg/kg reported in BH203 (0.1-0.2m), BH209 (0-0.1m) and BH210 (0.05- 0.1m), exceeded the ecological SAC of 300mg/kg.
TRH F4	25	680	0	0	-
Benzene	25	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Toluene	25	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Ethylbenzene	25	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-

×

Analyte	N	Max. (mg/kg)	N> Human Health SAC	N> Ecological SAC	Comments
Xylenes	25	<pql< td=""><td>0</td><td>0</td><td>-</td></pql<>	0	0	-
Asbestos (in soil) (%w/w)	17	<0.01 % w/w ACM <0.001%w/w AF/FA	0	NA	None of the results were above the SAC. AF/FA was detected in one sample from BH203 (0.1-0.2m), at a concentration below the SAC of 0.001%w/w.

Notes:

N: Total number (primary samples) NSL: No set limit NL: Not limiting

8.4.2 Waste Classification Assessment

The laboratory results were assessed against the criteria presented in Section 7.1.4. The results are presented in the report tables attached in the appendices. A summary of the results is presented in the following table:

Analyte	N	N > CT Criteria	N > SCC Criteria	Comments
Arsenic	25	0	0	-
Cadmium	25	0	0	-
Chromium	25	0	0	-
Copper	25	NSL	NSL	-
Lead	25	6	0	Lead concentrations exceeded the CT1 criterion in six primary fill samples collected from BH201 (0.9- 1.0m), BH210 (0.55-0.6m), BH211 (0.2-0.3m), BH217 (0.2-0.3m) and BH218 (0-0.1m). Lead also exceeded the CT1 criterion in a laboratory triplicate sample from BH203 (0.1-0.2m). The maximum lead concentration was 290mg/kg.
Mercury	25	0	0	-
Nickel	25	0	0	-
Zinc	25	NSL	NSL	-
TRH (C ₆ -C ₉)	25	0	0	-
TRH (C10-C36)	25	0	0	
BTEX	25	0	0	-

Table 8-3: Summary of Soil Laboratory Results Compared to CT and SCC Criteria

Analyte	N	N > CT Criteria	N > SCC Criteria	Comments
Total PAHs	25	0	0	-
Benzo(a)pyrene	25	3	0	Benzo(a)pyrene concentrations exceeded the CT1 criterion in three fill samples collected from BH208 (0.45-0.55m), BH211 (0.2-0.3m), and BH214 (0.3- 0.4). The maximum benzo(a)pyrene concentration was 3.5mg/kg.
OCPs & OPPs	16	0	0	-
PCBs	16	0	0	-
Asbestos	17	-	-	Asbestos was detected in the fill sample analysed from BH203 (0.1-0.2m).

N: Total number (primary samples)

NSL: No set limit

Table 8-4: Summary of Soil Laboratory Results Compared to TCLP Criteria

Analyte	N	N > TCLP Criteria	Comments
Lead	5	0	The five fill samples with the highest lead concentrations were analysed for TCLP lead. All results were less than the TCLP1 criterion.
Benzo(a)pyrene	3	0	All samples with CT1 exceedances were analysed for TCLP benzo(a)pyrene. All results were less than the TCLP1 criterion.

N: Total number (primary samples)

8.4.3 Statistical Analysis

We have undertaken 95% upper confidence limit (UCL) calculations using the available carcinogenic PAH, lead, and benzo(a)pyrene data, and we have also undertaken combined risk value (CRV) calculations on the carcinogenic PAH fill soil data (as there were exceedances of the HIL-A SAC for this CoPC), from all locations. The statistical analysis has been used as a line of evidence in assessing risks as part of the Tier 1 risk assessment process for carcinogenic PAHs. The UCL and CRV for carcinogenic PAHs have been considered in the context of human receptors and health-based risk.

The UCLs for lead and benzo(a)pyrene have been considered in the context of the preliminary waste classification assessment as lead and benzo(a)pyrene were encountered at concentrations that exceeded the CT1 criteria.

A summary of these calculations is presented below:

8.4.3.1 UCL calculations

Statistical calculations undertaken on the results using ProUCL (Version 5.1) are shown on Tables S1 and S7 attached in the appendices. In summary:

Analyte	N ^	Standard Deviation (mg/kg)	95% UCL (mg/kg)	Comment
Carcinogenic PAHs	25	1.3	2.16	Both the UCL and the standard deviation were less than the HIL-A SAC.
Lead	25	78.4	114.8	The UCL was greater than the CT1 criterion, but less than the SCC1 criterion.
Benzo(a)pyrene	25	0.92	0.99	The UCL was greater than the CT1 criterion, but less than the SCC1 criterion.

Table 8-5: Summary of 95% UCL calculations

Notes:

N^: Total number of samples, using the sample with the highest concentration where duplicates exist

8.4.3.2 Combined Risk Value Method (CRV)

A CRV calculation was undertaken for the carcinogenic PAH fill soil data with reference to Section 7.2 of the NSW EPA Sampling Design Part 1 – Application $(2022)^{20}$, Contaminated Land Guidelines. The CRV method is used to assess the minimum number of samples required to have an acceptable level of certainty around making Type I or Type II decision errors in determining whether or not a site is or is not contaminated (i.e. whether the power of the statistical tests is sufficient). These statistical tests have been used as a line of evidence in the Tier 1 risk assessment, with regards to the SAQP.

The number of samples (n) required for carcinogenic PAH, calculated using the CRV method, was 2.8. As the number of samples (n) is less than the number of samples analysed, this suggests (also considering the associated UCLs) that the site is not contaminated with carcinogenic PAHs to the extent that there would be an unacceptable risk to human receptors, i.e. there is sufficient power and reliability in the UCL to reject the null hypothesis (H_0). This is discussed further in the Tier 1 risk assessment.

8.5 Groundwater Laboratory Results

The groundwater laboratory results were assessed against the SAC presented in Section 7.2. Individual SAC are shown in the report tables attached in the appendices. A summary of the results is presented below:

Analyte	N ^	Max. (μg/L)	N> Human Health SAC	N> Ecological SAC	Comments
Arsenic	3	5	0	0	-

Table 8-6: Summary of Groundwater Laboratory Results – Human Health and Environmental (Ecological)

²⁰ NSW EPA, (2022). *Sampling design part 1 - application.* (referred to as EPA Sampling Design Guidelines 2022)

Analyte	N ^	Max. (µg/L)	N> Human Health SAC	N> Ecological SAC	Comments
Cadmium	3	<0.1	0	0	-
Chromium (total)	3	2	0	0	-
Copper	3	2	0	1	The copper concentration reported in MW208 exceeded the freshwater ecological SAC of 1.4µg/L.
Lead	3	<1	0	0	-
Mercury	3	<0.05	0	0	-
Nickel	3	7	0	0	-
Zinc	3	71	0	1	The zinc concentration reported in MW208 exceeded the freshwater ecological SAC of 8µg/L.
Total PAHs	3	6.3	0	0	-
Other PAHs Phenanthrene Anthracene Fluoranthene Benzo(a)pyrene Naphthalene	3	0.9 0.2 1.2 0.4 <0.1	0 0 1 0	1 1 1 1 0	The phenanthrene concentration reported in MW208 exceeded the freshwater ecological SAC of 0.6µg/L. The anthracene concentration reported in MW208 exceeded the freshwater ecological SAC of 0.01µg/L. The fluoranthene concentration reported in MW208 exceeded the freshwater ecological SAC of 1µg/L. The benzo(a)pyrene concentration reported in MW208 exceeded the freshwater ecological SAC of 0.1µg/L and the drinking water SAC of 0.01µg/L.
TRH F1	3	<10	0	NSL	-
TRH F2	3	62	0	NSL	-
TRH F3	3	120	NSL	NSL	-
TRH F4	3	<100	NSL	NSL	-
Benzene	3	<1	0	0	-
Toluene	3	<1	0	0	-
Ethylbenzene	3	<1	0	0	-

Analyte	N ^	Max. (µg/L)	N> Human Health SAC	N> Ecological SAC	Comments
m+p-Xylene	3	<2	0	0	-
o-Xylene	3	<1	0	0	-
Total Xylenes	3	<1	0	0	-
VOCs Chloroform	3	4	0	0	-
PFOS	3	0.0044	NSL	0	-
PFOS + PFHxS	3	0.0081	0	NSL	-
PFOA	3	0.0048	0	0	-

Notes:

^: Primary samples

N: Total number

NSL: No set limit

NL: Not limiting

9 WASTE CLASSIFICATION ASSESSMENT

9.1 Waste Classification of Fill

Based on the results of the preliminary waste classification assessment, and at the time of reporting, the fill material at the site is assigned a preliminary classification of **General Solid Waste (non-putrescible)** containing Special Waste (asbestos).

Fill containing asbestos cannot be considered for recycling purposes and any waste must be disposed of to a suitably licensed facility.

The waste classification(s) must be confirmed prior to the off-site disposal of any waste. Final waste classifications must consider all available data, and the waste quantities must be specified.

9.2 Classification of Natural Soil

Based on the scope of work undertaken for this assessment, and at the time of reporting, it is possible that some of the natural soils and bedrock at the site could classifiable as VENM for off-site disposal or re-use purposes. However, due to the presence of manmade contaminants (i.e. asbestos, PAHs, and TRHs) in the overlying fill, such classification would need to be confirmed following removal of the overlying fill based on a robust assessment process.

10 DISCUSSION

10.1 Tier 1 Risk Assessment and Review of CSM

For a contaminant to represent a risk to a receptor, the following three conditions must be present:

- 1. Source The presence of a contaminant;
- 2. Pathway A mechanism or action by which a receptor can become exposed to the contaminant; and
- 3. Receptor The human or ecological entity which may be adversely impacted following exposure to contamination.

If one of the above components is missing, the potential for adverse risks is relatively low.

10.1.1 Soil

10.1.1.1 Health based Risk

Carcinogenic PAHs (PAHs) were detected at concentrations that exceeded the health-based SAC in fill at two locations (refer to Figure 3). The source of the PAHs is considered likely to be associated with imported fill material containing trace amounts of ash and slag. Statistical calculations were run on the entire fill soil dataset for PAHs. The 95% UCL for PAHs in the fill soil were below the SAC.

The potential risks associated with PAHs in fill soils is considered to be low in the context of the current and future land use.

Although below the SAC, asbestos as AF/FA was detected in fill soil at one location (refer to Figure 3). The source of asbestos in fill at this location is considered likely to either be associated with historical demolition activities, or imported fill material which was encountered to varying depths across the site. The asbestos was detected in fill soils beneath asphaltic concrete pavement.

It is also noted that a bag of FCF/ACM was identified during the site inspection. It was unclear if the material in the bag was associated with the demolition works recently undertaken at the site, or associated with surficial FCF/ACM identified on the exposed fill soils beneath these buildings (i.e. associated with imported fill).

Given JKE did not observe asbestos/ACM on the site surface during the DSI, a majority of the fill soils at the site were either grass-covered, covered by artificial turf, or covered by hardstand, it is our opinion that asbestos in fill soils poses a relatively low risk in the current site configuration and while the fill soils are not disturbed as there is a low potential for airborne asbestos fibres to generate due to the lack of disturbance. As a duty of care, and to meet the requirements under Clause 429 of the Work Health and Safety Regulation (2017), an Asbestos Management Plan (AMP) (for asbestos in/on soil) must be prepared and implemented to manage the site until the activity occurs. Clause 429 will also apply in the context of the proposed construction works and will therefore need to be addressed.

Based on various lines of evidence, asbestos in/on fill/soil is considered likely to be a widespread issue at the site and all fill/soil should be treated as asbestos containing unless until demonstrated otherwise. We note that sampling was undertaken from boreholes which poses limitations for identifying asbestos in fill

due in part to low volume of soils that are inspected. However, the use of boreholes was necessary due to the hardstand surface cover/on-going school operations, existing buildings/structures and due to archaeological constraints. Sampling was not undertaken beneath the existing buildings/structures. The guidelines require an increased sampling density for asbestos when it is confirmed/known to exist in soil.

The asbestos concentrations reported to date do not definitively trigger a need for remediation, however, further investigation will be required to assess the soils for asbestos. Following consultation with the client, due to access and time constraints, it is proposed that this investigation occurs under the provisions of a Remediation Action Plan (RAP) that includes a requirement for further investigation when access is available, and also includes remediation contingencies to address a possible scenario where such investigation confirms that asbestos remediation is required. We are of the opinion this is a reasonable approach given that asbestos in soil remediation is expected to be straight forward, should it be required, and outlining these details in a RAP provides adequate confidence that the site can be rendered suitable for the proposed development from a contamination viewpoint.

10.1.1.2 Ecological Risk

Copper and TRH F3 were detected at concentrations that exceeded the ecological SAC in fill soil at the site (refer to Figure 3). The source of these contaminants is considered likely to be associated with the imported fill material identified at the site, or potentially on-site land uses (e.g. former bus depot, fuel/oil spills etc). In regards to the TRH F3 exceedances, the laboratory chromatographs were reviewed and indicated the concentrations from BH203 and BH206 most closely resembled asphaltic concrete, which is likely to mixed with the soil matrix as part of the construction of the overlying asphaltic concrete hardstand as both these samples are from the fill profiles immediately beneath the pavement. The chromatograph has been attached in Appendix D. The chromatograph for the TRH F3 in BH209 was inconclusive.

Based on the existing condition of the vegetation (in proximity to the locations) and the fact that the site is situated in an urban setting and is not located in an ecological sensitive area, the potential ecological risks associated with the identified occurrence of copper and TRH are considered to be low. The localised nature of these impacts also contributes to our assessment of low ecological risk. This is to be further assessed as part of the supplementary investigation, and in the RAP (if prepared) when the final activity details and all cut/fill earthworks are known.

10.1.1.3 Other CoPC

Elevated concentrations of the remaining CoPC were below the adopted SAC in the soil samples analysed during the DSI.

10.1.2 Groundwater

The groundwater sample from MW208 encountered concentrations of heavy metals (copper and zinc), and PAHs (phenanthrene, anthracene, fluoranthene, and benzo(a)pyrene) above the ecological SAC which is applicable to freshwater ecological receptors. The benzo(a)pyrene concentration also exceeded the drinking water and recreational SAC. The detections of these contaminants are likely associated with sediment in the sample and/or potentially due to the shorter time between development and sampling of

MW208. Although MW208 was allowed to recharge between sampling and development for a period of time that exceeded the minimum time specified in NEPM 2013, it is possible that better equilibration occurred in the other two wells. On this basis, we consider it unlikely that the conditions in MW208 are indicative of a site contamination issue that would warrant remediation. However, additional groundwater sampling will be required to confirm this.

Where temporary construction dewatering is required, it is expected that the management of such water would occur in accordance with the regulatory requirements so that no unacceptable construction-phase risks occur.

10.1.2.1 Other CoPC

Elevated concentrations of the other CoPC were not encountered above the adopted SAC in the groundwater samples analysed and therefore unacceptable risks to the receptors have not been identified to date.

A detection of chloroform reported in MW208 may be indicative of leaking potable water infrastructure containing trihalomethanes. A detection of TRH F2 was also reported in the groundwater sample from MW208. No odours or staining were reported in the soils/bedrock during fieldwork. As previously noted in relation to the PAHs exceedances, these detections may be indicative of residual impacts from former land use as a bus depot. None of the reported concentrations were assessed to pose an unacceptable risk to receptors in the context of the proposed development.

In our opinion, the reported groundwater concentrations indicated that there is a low potential for unacceptable vapour risks that would warrant remediation. Additional groundwater sampling will be required to confirm this.

10.2 Decision Statements

The decision statements are addressed below:

Are any results above the SAC?

Yes. Reference should be made to Section 10.1.

Do potential risks associated with contamination exist, and if so, what are they?

Unacceptable risks associated with complete SPR linkages were not identified. However, there are potential health risks associated with asbestos in fill soil. Risks relate to future soil disturbance and the potential mobilisation of asbestos fibres from ACM in soil to air.

Risks associated with groundwater were assessed to be low in the context of the proposed development, however, further sampling and risk assessment is required to confirm this.

Is further investigation/remediation required and what is likely to be involved?

Based on the data obtained during the DSI, further investigation of the site is required to provide a conclusive outcome regarding whether the land is suitable in its current state, or whether remediation is required (relating to Clause 4.6 of the Resilience and Hazards SEPP). Notwithstanding, we are of the opinion that the DSI has provided adequate data to enable further refinement of the CSM and for us to be satisfied that the site can be made suitable for the activity via remediation.

Further investigation of the site would involve another round of groundwater sampling to better understand the potential impacts from PAHs in the groundwater, and additional soil sampling for asbestos to achieve a higher density (this is triggered now that asbestos is "known" to exist in soil).

What is the preliminary waste classification of the in-situ fill material and natural soils/bedrock sampled and is further sampling/analysis required to confirm the waste classification(s)?

Refer to Section 9. Further sampling/analysis will be required to confirm these classifications.

Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

JKE is of the opinion that the site can be made suitable for the proposed development outlined in Section 1.2, subject to further assessment of the soil and groundwater at the site, and, if required, preparation of a remediation action plan (RAP), followed by remediation, and validation.

10.3 Review of CSM and Data Gaps

An assessment of data gaps is provided in the following table:

Data Gap	Assessment
Fill material	Fill ranging in depth between approximately 0.2mBGL to 1.4mBGL was encountered across the site during the DSI. The fill contained anthropogenic inclusions such as plastic, glass, tile, metal and brick fragments, slag, ash, and wood.
	It is noted that sampling occurred from boreholes which poses limitation for identifying asbestos in fill due in part to the hardstand surface cover and the archaeological constraints.
	Further investigation of the fill will be required following demolition of the remaining buildings/structures on site, and removal of hardstand when access becomes available to assess the full extent of risk associated with AEC. A higher density of fill sampling is required for asbestos characterisation unless remediation proceeds on the assumption that all fill is contaminated with asbestos. In our opinion, this work can be incorporated into the pre-remediation (supplementary) investigation under provisions in the RAP and this data gap does not alter our recommendations.
Historical bus depot land use	Historical title records indicated that the south-eastern portion of the site was owned by a company providing bus service operations and aerial photographs confirmed buses were being stored on this section of the site. Exceedances of carcinogenic PAHs in fill soil and PAHs in groundwater were reported at the site during the DSI. Risks associated with the fill/soil and

Table 10-1: Data Gap Assessment

Data Gap	Assessment
	groundwater were assessed to be low in the context of the proposed development, however, further sampling and risk assessment is required to confirm this. In our opinion, this work can be incorporated into the supplementary investigation under provisions in the RAP and this data gap does not alter our recommendations.
Use of pesticides	Based on the reported results to date, and at the time of reporting, risks associated with this AEC are considered to be low. However, sampling has not been completed adjacent to or beneath the existing buildings yet to be demolished (toilet block on southern side of site). Further investigation of the fill soils adjacent to/beneath the existing buildings to be demolished will be required to assess the full extent of risks associated with this AEC. In our opinion, this work can be incorporated into the supplementary investigation under provision in the RAP and this data gap does not alter our recommendations.
Hazardous Building Material	Former structures have been demolished across the site. Given the age of the existing and former buildings, hazardous building materials are considered likely to be present and may have impacted the site during demolition in the past when demolition practices were not as closely regulated.
	Asbestos was identified as a surficial FCF/ACM during previous investigations, in a bag of FCF/ACM during the site inspection for the DSI and in fill/soil during the DSI, and it is possible the asbestos is associated with this AEC and/or with imported fill.
	Further investigation of the fill soils will be required to assess the full extent of risks associated with this AEC. In our opinion, this work can be incorporated into the supplementary investigation under provisions in the RAP and this data gap does not alter our recommendations.
Off-site Area 1 (Dry Cleaners)	Based on the reported results to date, and at the time of reporting, risks associated with this AEC are considered to be low and do not require further assessment.
Off-site Area 2 (Mechanics/Service Stations)	Based on the reported results to date, and at the time of reporting, risks associated with this AEC are considered to be low and do not require further assessment.

11 CONCLUSIONS AND RECOMMENDATIONS

The DSI included a review of existing project information, a site inspection, soil sampling from 15 boreholes and groundwater sampling from three monitoring wells. The AEC identified at the site included: fill material; historical bus depot land use; use of pesticides; hazardous building materials; off-site areas (including dry cleaners and mechanics/service stations).

The boreholes/test pits encountered fill materials to depths of approximately 0.2mBGL to 1.4mBGL in all locations and was generally underlain by sandstone bedrock. The fill typically comprised of sandy, clayey or gravelly soils with inclusions of igneous, ironstone, and sandstone gravel; plastic, glass, tile, metal and brick fragments; slag; ash; wood and root fibres. No FCF or ACM was encountered in the fill material during the fieldwork.

A selection of soil and groundwater samples were analysed for the CoPC identified in the CSM. In fill soil carcinogenic PAHs were reported at concentrations above the health-based SAC. Asbestos (as AF/FA) was also detected in fill soils at one location, although the concentration of asbestos was below the health-based SAC. As a duty of care, and to meet the requirements under Clause 429 of the Work Health and Safety Regulation (2017), an AMP (for asbestos in/on soil) should be prepared and implemented for the current land use/operations, until the site is redeveloped. The AMP should be prepared by a Licensed Asbestos Assessor (LAA).

In groundwater, copper, zinc and PAHs (phenanthrene, anthracene, fluoranthene, and benzo(a)pyrene) were reported above the freshwater ecological SAC, and the benzo(a)pyrene concentration also exceeded the drinking water and recreational SAC.

The Tier 1 risk assessment did not identify a trigger for remediation, however further investigation of the site is required due to the occurrence of asbestos in fill and to better understand the potential impacts from PAHs in the groundwater.

Based on the data obtained during the DSI, further investigation of the site is required to supplement the DSI data. This further investigation is currently underway at the date of this report, and the SAQP for the investigation is attached in Appendix I. The further investigation will confirm whether or not remediation is required. Should remediation be required, then a Remediation Action Plan (RAP) must be prepared for the Project. Notwithstanding, we are of the opinion that the DSI has provided adequate data to enable further refinement of the CSM and for JKE to be confident that the site can be made suitable for the activity via remediation, should the further investigation confirm that remediation is required.

We recommend the following:

- 1. Prepare an interim AMP to manage potential risks from asbestos in/on soil until the activity occurs;
- 2. Completion of further investigation (referred to above), together with an associated addendum/supplementary report presenting the results;
- 3. Preparation and implementation of a RAP, if the need for a RAP is confirmed in the addendum/ supplementary report; and
- 4. Preparation and implementation of a construction-phase AMP.

Preliminary waste classifications are discussed in Section 9. Confirmatory waste classification assessment is required.

The requirement to report site contamination to the NSW EPA under the NSW EPA Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (2015)²¹ must be assessed by a suitably qualified consultant as part of the additional investigation process. At this stage we are of the opinion that the notification triggers have not been met.

JKE consider that the report objectives outlined in Section 2.1 have been addressed.

11.1 Mitigation Measures – REF Requirement

JKE was requested by the client to include a table to support the contamination-related risk mitigation measures to be included in the REF. Mitigation measures to avoid, minimise, rectify and/or reduce or eliminate over time the adverse environmental impacts identified in the DSI are outlined in the table below:

Mitigation Number / Name	Aspect / Section	Mitigation Measure	Reason for Mitigation Measure
Interim AMP	As soon as reasonably practicable.	Preparation of an interim AMP.	As a duty of care, and to meet the requirements under Clause 429 of the WHS Regulation, an AMP (for asbestos in/on soil) is required to be prepared and implemented to manage the site until activity occurs.
RAP	Prior to development.	Preparation of a RAP.	Further investigation will occur to confirm whether there is a need for a RAP. Should the RAP be required, it will be due to the occurrence of contamination that triggers a need for remediation and it would be implemented so that contamination- related risks are suitably mitigated during construction and so that the site is made suitable for the proposed activity prior to use.
Construction Phase AMP	Prior to soil disturbance, remediation and construction.	Preparation of a Construction phase AMP.	To meet the requirements under Clause 429 of the WHS Regulation a construction phase AMP is required for the proposed construction works.

Table 11-1: Mitigation Measures Relating to DSI Findings

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997 (referred to as Duty to Report Contamination)

11.2 Evaluation of Environmental Impacts – REF Requirement

It is considered that the environmental impacts as identified in the DSI can be adequately mitigated through the above recommended measures.

Where any remediation is undertaken, a site validation report must be prepared on completion to demonstrate that the remedial and validation actions have been completed and to confirm that the site is suitable for the activity form a contamination perspective.

12 LIMITATIONS

The report limitations are outlined below:

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The conclusions presented in this report are based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The investigation and preparation of this report have been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Investigation Limitations

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

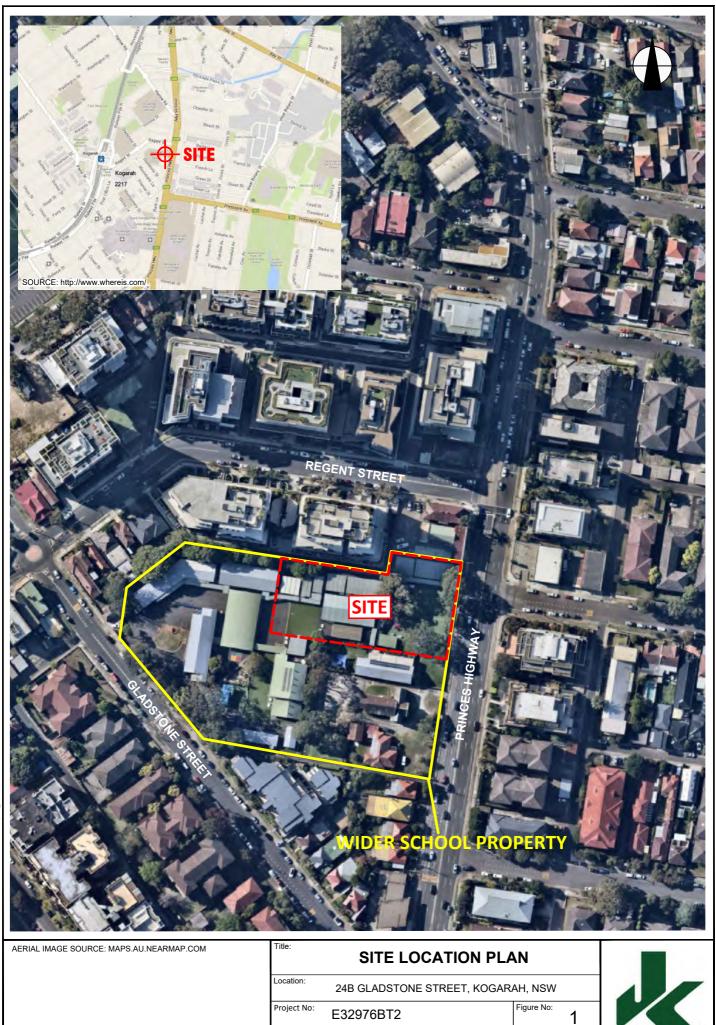
Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

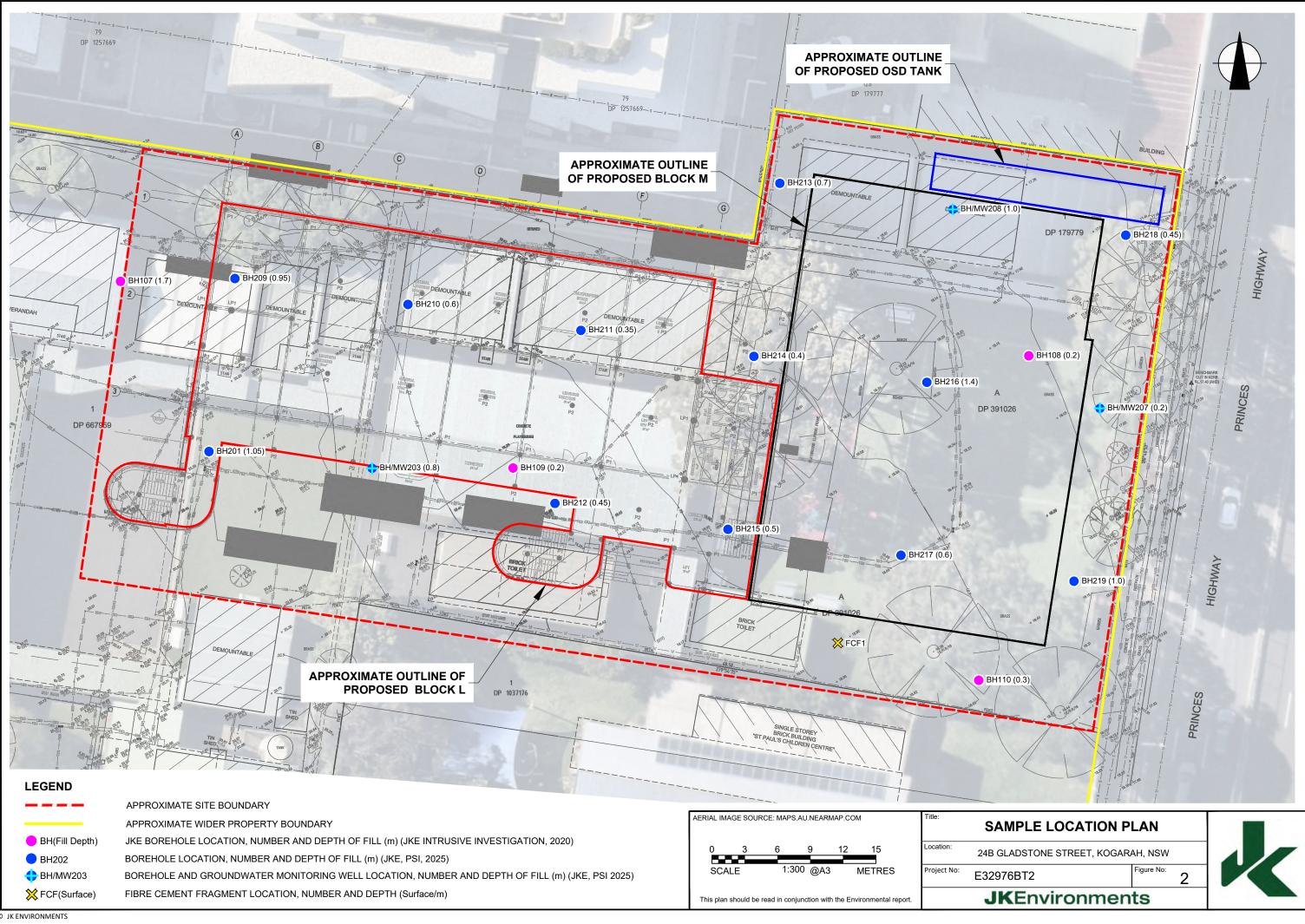
Logs Should not be Separated from the Investigation Report

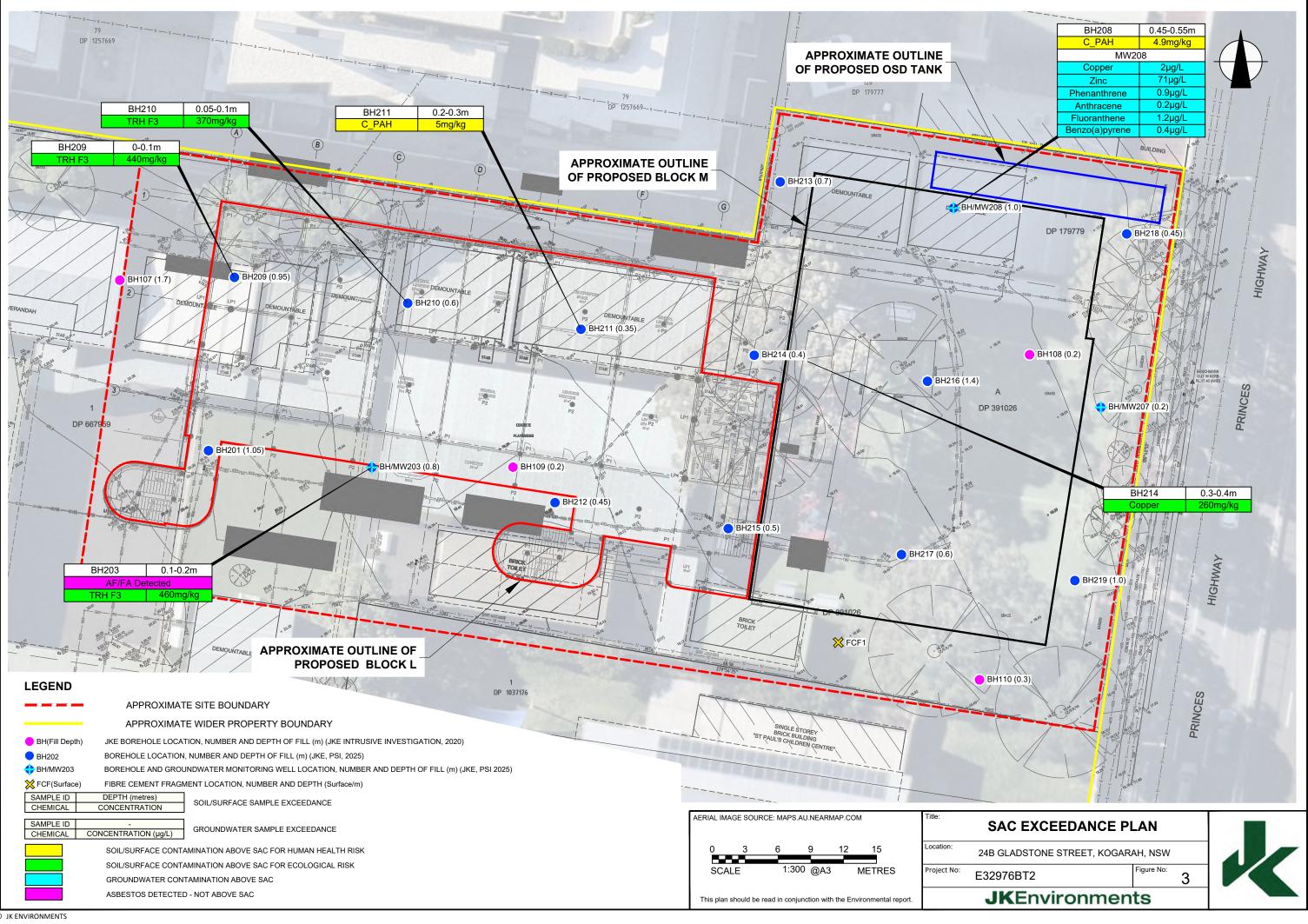
Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

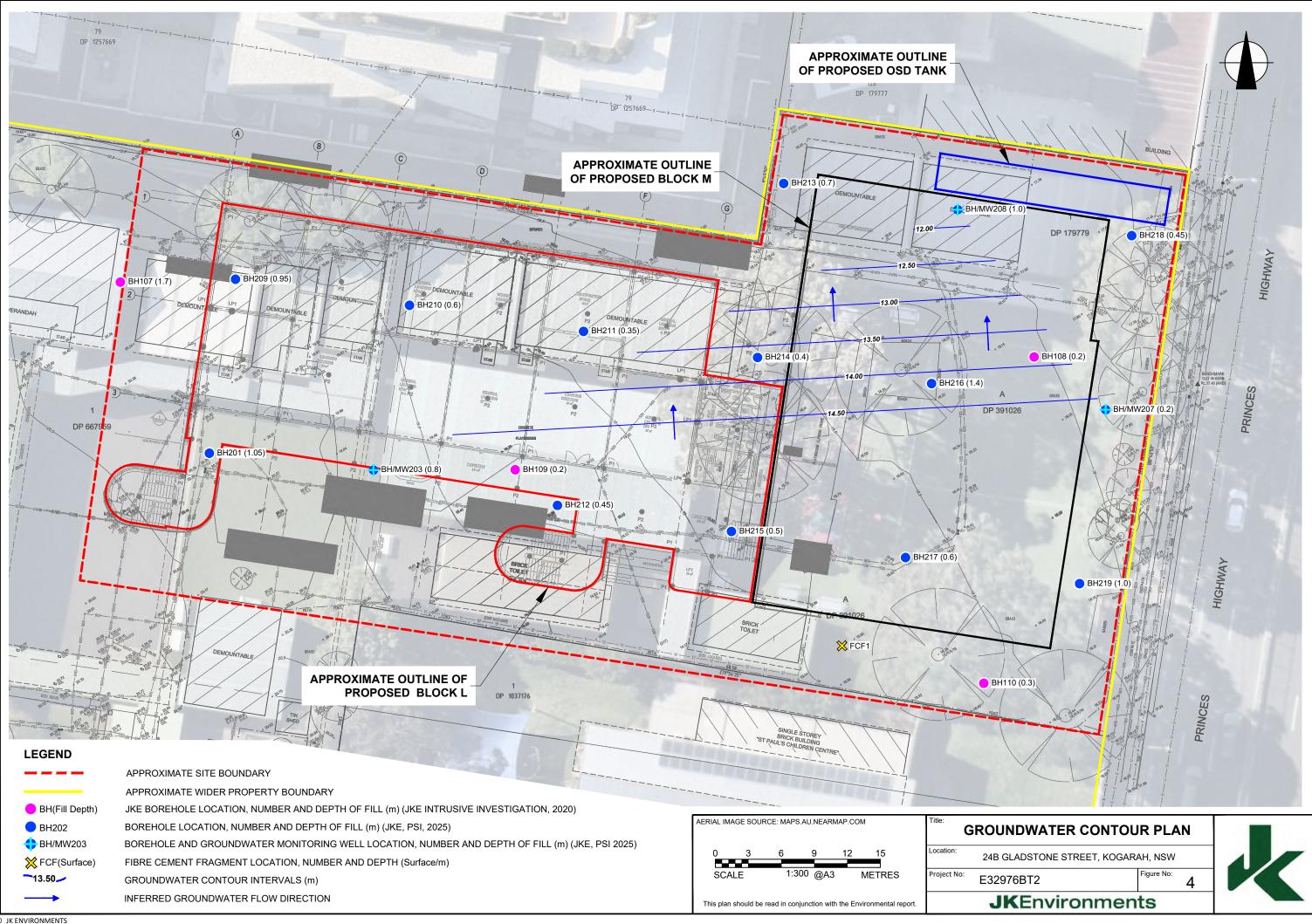
To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.


Read Responsibility Clauses Closely

Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.


Appendix A: Report Figures




JKEnvironments

This plan should be read in conjunction with the Environmental report.

© JK ENVIRONMENTS

© JK ENVIRONMENTS

Appendix B: Laboratory Results Summary Tables

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ABC:	Ambient Background Concentration	PCBs:	Polychlorinated Biphenyls
ACM:	Asbestos Containing Material	PCE:	Perchloroethylene (Tetrachloroethylene or Teterachloroethene)
ADWG:	AustralianDrinking Water Guidelines	рН _{ксL} :	pH of filtered 1:20, 1M KCL extract, shaken overnight
AF:	Asbestos Fines	pH _{ox} :	pH of filtered 1:20 1M KCl after peroxide digestion
ANZG	Australian and New Zealand Guidelines	PQL:	Practical Quantitation Limit
B(a)P:	Benzo(a)pyrene	RS:	Rinsate Sample
CEC:	Cation Exchange Capacity	RSL:	Regional Screening Levels
CRC:	Cooperative Research Centre	RSW:	Restricted Solid Waste
CT:	Contaminant Threshold	SAC:	Site Assessment Criteria
EILs:	Ecological Investigation Levels	SCC:	Specific Contaminant Concentration
ESLs:	Ecological Screening Levels	S _{Cr} :	Chromium reducible sulfur
FA:	Fibrous Asbestos	S _{POS} :	Peroxide oxidisable Sulfur
GIL:	Groundwater Investigation Levels	SSA:	Site Specific Assessment
GSW:	General Solid Waste	SSHSLs	: Site Specific Health Screening Levels
HILs:	Health Investigation Levels	TAA:	Total Actual Acidity in 1M KCL extract titrated to pH6.5
HSLs:	Health Screening Levels	TB:	Trip Blank
HSL-SSA:	Health Screening Level-SiteSpecific Assessment	TCA:	1,1,1 Trichloroethane (methyl chloroform)
kg/L	kilograms per litre	TCE:	Trichloroethylene (Trichloroethene)
NA:	Not Analysed	TCLP:	Toxicity Characteristics Leaching Procedure
NC:	Not Calculated	TPA:	Total Potential Acidity, 1M KCL peroxide digest
NEPM:	National Environmental Protection Measure	TS:	Trip Spike
NHMRC:	National Health and Medical Research Council	TRH:	Total Recoverable Hydrocarbons
NL:	Not Limiting	TSA:	Total Sulfide Acidity (TPA-TAA)
NSL:	No Set Limit	UCL:	Upper Level Confidence Limit on Mean Value
OCP:	Organochlorine Pesticides	USEPA	United States Environmental Protection Agency
OPP:	Organophosphorus Pesticides	VOCC:	Volatile Organic Chlorinated Compounds
PAHs:	Polycyclic Aromatic Hydrocarbons	WHO:	World Health Organisation
%w/w:	weight per weight		
ppm:	Parts per million		

Table Specific Explanations:

HIL Tables:

- The chromium results are for Total Chromium which includes Chromium III and VI. For initial screening purposes, we have assumed that the samples contain only Chromium VI unless demonstrated otherwise by additional analysis.
- Carcinogenic PAHs is a toxicity weighted sum of analyte concentrations for a specific list of PAH compounds relative to B(a)P. It is also referred to as the B(a)P Toxic Equivalence Quotient (TEQ).
- Statistical calculations are undertaken using ProUCL (USEPA). Statistical calculation is usually undertaken using data from fill samples.

EIL/ESL Table:

Site specific ABC values for specific metals have been adopted.

Waste Classification and TCLP Table:

- Data assessed using the NSW EPA Waste Classification Guidelines, Part 1: Classifying Waste (2014).
- The assessment of Total Moderately Harmful pesticides includes: Dichlorovos, Dimethoate, Fenitrothion, Ethion, Malathion and Parathion.
- Assessment of Total Scheduled pesticides include: HBC, alpha-BHC, gamma-BHC, beta-BHC, Heptachlor, Aldrin, Heptachlor Epoxide, gamma-Chlordane, alpha-chlordane, pp-DDE, Dieldrin, Endrin, pp-DDD, pp-DDT, Endrin Aldehyde.

QA/QC Table:

- Field blank, Inter and Intra laboratory duplicate results are reported in mg/kg.
- Trip spike results are reported as percentage recovery.
- Field rinsate results are reported in μg/L.

SOIL LABORATORY RESULTS COMPARED TO NEPM 2013.

networks ne							HEAVY N	IETALS			1		PAHs			ORGANOCHI	LORINE PESTI	CIDES (OCPs)	1		OP PESTICIDES (OPPs)		
international symbol	All data in mg/kg unless s	stated otherwise		Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc			HCB	Endosulfan	Methoxychlor		Chlordane		Heptachlor	Chlorpyrifos	TOTAL PCBs	ASBESTOS FIBRES
simple bar Simple bar <th>QL - Envirolab Services</th> <th></th> <th></th> <th>4</th> <th>0.4</th> <th>1</th> <th>1</th> <th>1</th> <th>0.1</th> <th>1</th> <th>1</th> <th>-</th> <th>0.5</th> <th>0.1</th> <th>0.1</th> <th>0.1</th> <th>0.1</th> <th>0.1</th> <th></th> <th>0.1</th> <th>0.1</th> <th>0.1</th> <th>100</th>	QL - Envirolab Services			4	0.4	1	1	1	0.1	1	1	-	0.5	0.1	0.1	0.1	0.1	0.1		0.1	0.1	0.1	100
Nini	Site Assessment Criteria ((SAC)		100	20	100	6000	300	40	400	7400	300	3	10	270	300	6	50	240	6	160	1	Detected/Not Detecte
main no.1	Sample Reference	Sample Depth	Sample Description																				
neth ind No ind	3H201	0.1-0.2	Fill: Silty Gravel	<4	<0.4	15	43	6	<0.1	7	29	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
neth 1 1 1 4	3H201 - [LAB_DUP]	0.1-0.2	Fill: Silty Gravel	<4	<0.4	17	50	6	<0.1	9	28	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
HardBi	3H201	0.9-1	Fill: Silty Sandy Clay	6	<0.4	15	38	130	0.4	3	120	8.1	1.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
main main main main main main main main	3H203	0.1-0.2	Fill: Silty Sand	<4	<0.4	17	89	32	<0.1	26	54	9.5	1.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Detected
Bit	3H2O3 - [LAB_DUP]	0.1-0.2	Fill: Silty Sand	<4	<0.4	18	74	67	<0.1	22	79	6.4	0.9	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
noncov nin ni	3H203 - [TRIPLICATE]	0.1-0.2	Fill: Silty Sand	<4	0.5	11	32	290	0.4	6	400	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
mode net net set </td <td>3H203</td> <td>0.3-0.4</td> <td>Fill: Silty Sandy Clay</td> <td>4</td> <td><0.4</td> <td>12</td> <td>20</td> <td>120</td> <td><0.1</td> <td>4</td> <td>84</td> <td>5</td> <td>0.7</td> <td>NA</td>	3H203	0.3-0.4	Fill: Silty Sandy Clay	4	<0.4	12	20	120	<0.1	4	84	5	0.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
berrow 0 <td>3H207</td> <td>0-0.1</td> <td>Fill: Silty Sand</td> <td><4</td> <td><0.4</td> <td>15</td> <td>23</td> <td>11</td> <td><0.1</td> <td>8</td> <td>44</td> <td>0.06</td> <td><0.5</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td>Not Detected</td>	3H207	0-0.1	Fill: Silty Sand	<4	<0.4	15	23	11	<0.1	8	44	0.06	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
Dial P1 Fillinging 4 04 <	3H208	0-0.1	Fill: Silty Sand	5	<0.4	12	15	36	<0.1	6	67	6.2	0.7	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
nerby <td>3H208</td> <td>0.45-0.55</td> <td>Fill: Silty Sandy Clay</td> <td>7</td> <td><0.4</td> <td>22</td> <td>11</td> <td>84</td> <td>0.2</td> <td>10</td> <td>78</td> <td>50</td> <td>4.9</td> <td>NA</td>	3H208	0.45-0.55	Fill: Silty Sandy Clay	7	<0.4	22	11	84	0.2	10	78	50	4.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BACD DEG Fill Symidy (M) A A A B<	3H209	0-0.1		4	<0.4	14	24	55	0.1	6	160	1.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
math			•	5	<0.4	20	<1		<0.1	2	12	0.07			NA			NA			NA	NA	NA
member of the stress of the	3H210	0.05-0.1	Fill: Gravel	<4	<0.4	5	50	9	<0.1	29	25	< 0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
ner11 0.2.0 PHE Mysond M 0.5 12 92 92 0.4 7 40 0.1								140															
Name												-											Not Detected
Na12 0.1.0.1 File Gamel 5 0.4 12 0.4 12 15 15 0.1 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																							
PickP																							
Bit1 Dial Pite																							
Bit14 Bit15 Gr			•																				
bill fills lity shod cd old old <td></td> <td></td> <td>•</td> <td></td>			•																				
BR125 Q2.03 Fills Siny Sand G4 O.4 P12 P1			•			-																	
BR216 0.1 Fill: Siny Sand cd cd 0.1 16 9 cd 7 8 7 6 0			•							•		-											Not Detected
BH216 1.1.3 FHI: Samplon 6.4 0.4 15 1.1 4 0.1 1 1.1 0.0 NA <t< td=""><td></td><td></td><td>•</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			•				-			-		-											
B11 Fills Bity Sand G4 G4 G4 G4 G4 G1 B12 G1 G01 G01 <			•				16			-													Not Detected
BA12 Q.2.03 Fill: Silty Sand Ad Add <																				NA			
BH12 0.1 FHI: SHYsAM 4.4 9.4 9 19 160 0.1 6.1 0.1 -0.1 -0.1 -0.1 -0.1 FHI: SHYsAM -0.4 13 27 13 -0.1 9 44 1.5 -0.5 -0.1<		0-0.1	Fill: Silty Sand	<4	<0.4		21	18	<0.1	8		0.95	<0.5		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			Not Detected
θ0.1 Fill: Sily Sond 64 0.4 1.3 2.7 1.3 0.1 9 44 1.5 0.0 0.1	3H217	0.2-0.3	Fill: Silty Sand	<4	<0.4	12	25	170	0.1	7	450	5	0.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P112 P14B P17	3H218	0-0.1	Fill: Silty Sand	<4	<0.4	9	19	160	0.1	6	110	6.6	0.9	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
B1219 0.5-0.6 Fill Sity Sand 4.4 0.4 9 7 23 0.1 2 19 2.7 0.50 0.1	3H219	0-0.1	Fill: Silty Sand	<4	<0.4	13	27	13	<0.1	9	44	1.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
BH217 (0-0.1) Fill:Sity Sand C </td <td>3H219 - [LAB_DUP]</td> <td>0-0.1</td> <td>Fill: Silty Sand</td> <td><4</td> <td><0.4</td> <td>15</td> <td>21</td> <td>12</td> <td><0.1</td> <td>7</td> <td>45</td> <td><0.05</td> <td><0.5</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td>NA</td>	3H219 - [LAB_DUP]	0-0.1	Fill: Silty Sand	<4	<0.4	15	21	12	<0.1	7	45	<0.05	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
SDUP20 BH207 (0-0.1m) Fill: Silty Sand < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <	3H219	0.5-0.6	Fill Silty Sand	<4	<0.4	9	7	23	<0.1	2	19	2.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	Not Detected
Image: static	SDUP201	BH217 (0-0.1m)	Fill: Silty Sand	<4	<0.4	13	23	20	<0.1	14	50	1.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Maximum Value Out <	SDUP202	BH207 (0-0.1m)	Fill: Silty Sand	<4.0	<0.40	12	18	17	<0.10	5.9	60	6.6	0.82	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA
Maximum Value100.5222602000.8334505054PQL	Total Number of Sampl	les		32	32	32	32	32	32	32	32	31	31	22	22	22	22	22	22	22	22	22	11
Statistical Analysis on Fill Samples NC	Maximum Value																						Detected
Number of Fill Samples NC <				10	0.5	22	200	250	0.0	55	450	50	5	<1 QL									Detetted
Mean Value NC			Samples																				
Standard Deviation NC N	•	5													-								
% UCL NC																							
UCL Value NC																							
															-								
Concentration above the SAC Standard deviation exceeds data assessment criteria	UCL Value			NC	NC	NC	NC	NC	NC	NC	NC	NC	2.158	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
	Concentration above the	SAC		VALUE				Standard d	eviation exce	eds data ass	sessment cr	iteria	VALUE										

SOIL LABORATORY RESULTS COMPARED TO HSLs All data in mg/kg unless stated otherwise

					C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	Field PID Measuremen
QL - Envirolab Service	s				25	50	0.2	0.5	1	1	1	ppm
EPM 2013 HSL Land L	Jse Category						HSL-A/B: LC	W/HIGH DENSITY	RESIDENTIAL			
Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category								
BH201	0.1-0.2	Fill: Silty Gravel	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.2
BH201 - [LAB_DUP]	0.1-0.2	Fill: Silty Gravel	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.2
BH201	0.9-1	Fill: Silty Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH203	0.1-0.2	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.2
BH203 - [LAB_DUP]	0.1-0.2	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.2
BH203	0.3-0.4	Fill: Silty Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH207	0-0.1	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH208	0-0.1	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH208	0.45-0.55	Fill: Silty Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH209	0-0.1	Fill: Silty Sand	0m to <1m	Sand	<25	65	<0.2	<0.5	<1	<1	<1	0
BH209	0.6-0.8	Fill: Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH210	0.05-0.1	Fill: Gravel	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1
BH210	0.55-0.6	Fill: Silty Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	1.8
BH211	0.2-0.3	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH211 - [LAB_DUP]	0.2-0.3	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH212	0.1-0.15	Fill: Gravel	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH213	0-0.1	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH214	0.2-0.3	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.4
BH214	0.3-0.4	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.5
BH215	0-0.1	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH215	0.2-0.3	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH216	0-0.1	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH216	1-1.3	Fill: Sandy Clay	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH217	0-0.1	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH217	0.2-0.3	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.2
BH218	0-0.1	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH219	0-0.1	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH219 - [LAB_DUP]	0-0.1	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0
BH219	0.5-0.6	Fill Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	0.3
SDUP201	BH217 (0-0.1m)	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<1	<1	-
SDUP202	BH207 (0-0.1m)	Fill: Silty Sand	0m to <1m	Sand	<25	<50	<0.2	<0.5	<1	<3	<1	-
Total Number of San	nnles				31	31	31	31	31	31	31	29
	il pies				<pql< td=""><td>65</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	65	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1.8</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>1.8</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>1.8</td></pql<></td></pql<>	<pql< td=""><td>1.8</td></pql<>	1.8

Sample Reference	Sample Depth	Sample Description	Depth Category	Soil Category	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene
BH201	0.1-0.2	Fill: Silty Gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH201 - [LAB_DUP]	0.1-0.2	Fill: Silty Gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH201	0.9-1	Fill: Silty Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH203	0.1-0.2	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH203 - [LAB_DUP]	0.1-0.2	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH203	0.3-0.4	Fill: Silty Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH207	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH208	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH208	0.45-0.55	Fill: Silty Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH209	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH209	0.6-0.8	Fill: Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH210	0.05-0.1	Fill: Gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH210	0.55-0.6	Fill: Silty Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH211	0.2-0.3	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH211 - [LAB_DUP]	0.2-0.3	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH212	0.1-0.15	Fill: Gravel	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH213	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH214	0.2-0.3	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH214	0.3-0.4	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH215	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH215	0.2-0.3	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH216	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH216	1-1.3	Fill: Sandy Clay	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH217	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH217	0.2-0.3	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH218	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH219	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH219 - [LAB_DUP]	0-0.1	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
BH219	0.5-0.6	Fill Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP201	BH217 (0-0.1m)	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3
SDUP202	BH207 (0-0.1m)	Fill: Silty Sand	0m to <1m	Sand	45	110	0.5	160	55	40	3

HSL SOIL ASSESSMENT CRITERIA

SOIL LABORATORY RESULTS COMPARED TO MANAGEMENT LIMITS All data in mg/kg unless stated otherwise

BTEX napthalene 100 100 25 50 100 100 25 50 100 100 25 50 100 100 25 <50 <100 <100 25 <50 <100 <100 25 <50 <100 <100 25 <50 460 680 <25 <50 400 610 <25 <50 400 610 <25 <50 400 610 <25 <50 200 100 <25 <50 200 100 <25 <50 200 100 <25 <50 100 100 <25 <50 100 100 <25 <50 100 100 <25 <50 100 100 <25 <50 100 100 <25 <50 100 <td< th=""><th></th><th></th><th></th><th>C₆-C₁₀ (F1) plus</th><th>>C₁₀-C₁₆ (F2) plus</th><th>>C₁₆-C₃₄ (F3)</th><th>>C34-C40 (F4)</th></td<>				C ₆ -C ₁₀ (F1) plus	>C ₁₀ -C ₁₆ (F2) plus	>C ₁₆ -C ₃₄ (F3)	>C34-C40 (F4)																																																																																																																																																																								
RESIDENTIAL, PARKLAND & PUBLIC OPEN SPACE <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 460 680 <25 <50 400 610 <25 <50 400 610 <25 <50 130 140 <25 <50 200 100 <25 <50 200 100 <25 <50 200 100 <25 <50 200 100 <25 <50 200 100 <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 <100 <				BTEX		· 016 034 (· 07	. 034 040 ()																																																																																																																																																																								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	QL - Envirolab Services																																																																																																																																																																														
<25 <50 <100 <100 <25 <50 <100 <100 <25 <50 460 680 <25 <50 400 610 <25 <50 400 610 <25 <50 130 140 <25 <50 <100 <100 <25 <50 200 100 <25 <50 200 100 <25 <50 260 <100 <25 <50 100 <100 <25 <50 100 <100 <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 <100 <100 <25 <50 <100	IEPM 2013 Land Use Cate	egory		RES	SIDENTIAL, PARKLAND	& PUBLIC OPEN SP	ACE																																																																																																																																																																								
<25	Sample Reference	Sample Depth	Soil Texture																																																																																																																																																																												
<25	BH201	0.1-0.2	Coarse	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 460 680 <25	BH201 - [LAB_DUP]	0.1-0.2	Coarse	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 400 610 <25	BH201	0.9-1	Fine	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 130 140 <25	BH203	0.1-0.2	Coarse	<25	<50	460	680																																																																																																																																																																								
<25	BH203 - [LAB_DUP]	0.1-0.2	Coarse	<25	<50	400	610																																																																																																																																																																								
<25 <50 200 100 <25	BH203	0.3-0.4	Fine	<25	<50	130	140																																																																																																																																																																								
<25 <50 260 <100 <25	BH207	0-0.1	Coarse	<25	<50	<100	<100																																																																																																																																																																								
<25 65 440 190 <25	BH208	0-0.1	Coarse	<25	<50	200	100																																																																																																																																																																								
<25 <50 <100 <100 <25	BH208	0.45-0.55	Fine	<25	<50	260	<100																																																																																																																																																																								
<25 <50 370 490 <25	BH209	0-0.1	Coarse	<25	65	440	190																																																																																																																																																																								
<25	BH209	0.6-0.8	Fine	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 120 <100 <25	BH210	0.05-0.1	Coarse	<25	<50	370	490																																																																																																																																																																								
<25 <50 140 <100 <25	BH210	0.55-0.6	Fine	<25	<50	<100	<100	<25 <50 160 200 <25	BH211	0.2-0.3	Coarse	<25	<50	120	<100	<25 <50 <100 <100 <25	BH211 - [LAB_DUP]	0.2-0.3	Coarse	<25	<50	140	<100	<25	BH212	0.1-0.15	Coarse	<25	<50	160	200	<25 <50 140 <100 <25	BH213	0-0.1	Coarse	<25	<50	<100	<100	<25 <50 <100 <100 <25	BH214	0.2-0.3	Coarse	<25	<50	<100	<100	<25 <50 100 <100 <25	BH214	0.3-0.4	Coarse	<25	<50	140	<100	<25 <50 <100 <100 <25	BH215	0-0.1	Coarse	<25	<50	<100	<100	<25 <50 <100 <100 <25	BH215	0.2-0.3	Coarse	<25	<50	100	<100	<25 <50 <100 <100 <25	BH216	0-0.1	Coarse	<25	<50	<100	<100	<25 <50 <100 <100 <25	BH216	1-1.3	Fine	<25	<50	<100	<100	<25 <50 <100 <100 <25	BH217	0-0.1	Coarse	<25	<50	<100	<100	<25 <50 100 130 <25	BH217	0.2-0.3	Coarse	<25	<50	<100	<100	<25 <50 <100 <100 <25 <50 <100 <100	BH218	0-0.1	Coarse	<25	<50	<100	<100	<25 <50 <100 <100	BH219	0-0.1	Coarse	<25	<50	100	130		BH219 - [LAB_DUP]	0-0.1	Coarse	<25	<50	<100	<100		BH219	0.5-0.6	Coarse	<25	<50	<100	<100	<25 <50 <100 <100	SDUP201	BH217 (0-0.1m)	Coarse	<25	<50	<100	<100	<25 <50 <100 <100	SDUP202	BH207 (0-0.1m)	Coarse	<25	<50	<100	<100	31 31 31 31	otal Number of Samples	:		31	31	31	31		•								Total Number of Samples Maximum Value Concentration above the S			31 <pql VALUE</pql 			31 460
BH210	0.55-0.6	Fine	<25	<50	<100	<100																																																																																																																																																																									
<25 <50 160 200 <25	BH211	0.2-0.3	Coarse	<25	<50	120	<100	<25 <50 <100 <100 <25	BH211 - [LAB_DUP]	0.2-0.3	Coarse	<25	<50	140	<100	<25	BH212	0.1-0.15	Coarse	<25	<50	160	200	<25 <50 140 <100 <25	BH213	0-0.1	Coarse	<25	<50	<100	<100	<25 <50 <100 <100 <25	BH214	0.2-0.3	Coarse	<25	<50	<100	<100	<25 <50 100 <100 <25	BH214	0.3-0.4	Coarse	<25	<50	140	<100	<25 <50 <100 <100 <25	BH215	0-0.1	Coarse	<25	<50	<100	<100	<25 <50 <100 <100 <25	BH215	0.2-0.3	Coarse	<25	<50	100	<100	<25 <50 <100 <100 <25	BH216	0-0.1	Coarse	<25	<50	<100	<100	<25 <50 <100 <100 <25	BH216	1-1.3	Fine	<25	<50	<100	<100	<25 <50 <100 <100 <25	BH217	0-0.1	Coarse	<25	<50	<100	<100	<25 <50 100 130 <25	BH217	0.2-0.3	Coarse	<25	<50	<100	<100	<25 <50 <100 <100 <25 <50 <100 <100	BH218	0-0.1	Coarse	<25	<50	<100	<100	<25 <50 <100 <100	BH219	0-0.1	Coarse	<25	<50	100	130		BH219 - [LAB_DUP]	0-0.1	Coarse	<25	<50	<100	<100		BH219	0.5-0.6	Coarse	<25	<50	<100	<100	<25 <50 <100 <100	SDUP201	BH217 (0-0.1m)	Coarse	<25	<50	<100	<100	<25 <50 <100 <100	SDUP202	BH207 (0-0.1m)	Coarse	<25	<50	<100	<100	31 31 31 31	otal Number of Samples	:		31	31	31	31		•								Total Number of Samples Maximum Value Concentration above the S			31 <pql VALUE</pql 			31 460								
BH211	0.2-0.3	Coarse	<25	<50	120	<100																																																																																																																																																																									
<25 <50 <100 <100 <25	BH211 - [LAB_DUP]	0.2-0.3	Coarse	<25	<50	140	<100																																																																																																																																																																								
<25	BH212	0.1-0.15	Coarse	<25	<50	160	200																																																																																																																																																																								
<25 <50 140 <100 <25	BH213	0-0.1	Coarse	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 <100 <100 <25	BH214	0.2-0.3	Coarse	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 100 <100 <25	BH214	0.3-0.4	Coarse	<25	<50	140	<100																																																																																																																																																																								
<25 <50 <100 <100 <25	BH215	0-0.1	Coarse	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 <100 <100 <25	BH215	0.2-0.3	Coarse	<25	<50	100	<100																																																																																																																																																																								
<25 <50 <100 <100 <25	BH216	0-0.1	Coarse	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 <100 <100 <25	BH216	1-1.3	Fine	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 <100 <100 <25	BH217	0-0.1	Coarse	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 100 130 <25	BH217	0.2-0.3	Coarse	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 <100 <100 <25 <50 <100 <100	BH218	0-0.1	Coarse	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 <100 <100	BH219	0-0.1	Coarse	<25	<50	100	130																																																																																																																																																																								
	BH219 - [LAB_DUP]	0-0.1	Coarse	<25	<50	<100	<100																																																																																																																																																																								
	BH219	0.5-0.6	Coarse	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 <100 <100	SDUP201	BH217 (0-0.1m)	Coarse	<25	<50	<100	<100																																																																																																																																																																								
<25 <50 <100 <100	SDUP202	BH207 (0-0.1m)	Coarse	<25	<50	<100	<100																																																																																																																																																																								
31 31 31 31	otal Number of Samples	:		31	31	31	31																																																																																																																																																																								
	•																																																																																																																																																																														
	Total Number of Samples Maximum Value Concentration above the S			31 <pql VALUE</pql 			31 460																																																																																																																																																																								

MANAGEMENT LIMIT ASSESSMENT CRITERIA

Sample Reference	Sample Depth	Soil Texture	C ₆ -C ₁₀ (F1) plus BTEX	>C ₁₀ -C ₁₆ (F2) plus napthalene	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)
BH201	0.1-0.2	Coarse	700	1000	2500	10000
BH201 - [LAB DUP]	0.1-0.2	Coarse	700	1000	2500	10000
BH201	0.9-1	Fine	800	1000	3500	10000
BH203	0.1-0.2	Coarse	700	1000	2500	10000
BH203 - [LAB_DUP]	0.1-0.2	Coarse	700	1000	2500	10000
BH203	0.3-0.4	Fine	800	1000	3500	10000
BH207	0-0.1	Coarse	700	1000	2500	10000
BH208	0-0.1	Coarse	700	1000	2500	10000
BH208	0.45-0.55	Fine	800	1000	3500	10000
BH209	0-0.1	Coarse	700	1000	2500	10000
BH209	0.6-0.8	Fine	800	1000	3500	10000
BH210	0.05-0.1	Coarse	700	1000	2500	10000
BH210	0.55-0.6	Fine	800	1000	3500	10000
BH211	0.2-0.3	Coarse	700	1000	2500	10000
BH211 - [LAB_DUP]	0.2-0.3	Coarse	700	1000	2500	10000
BH212	0.1-0.15	Coarse	700	1000	2500	10000
BH213	0-0.1	Coarse	700	1000	2500	10000
BH214	0.2-0.3	Coarse	700	1000	2500	10000
BH214	0.3-0.4	Coarse	700	1000	2500	10000
BH215	0-0.1	Coarse	700	1000	2500	10000
BH215	0.2-0.3	Coarse	700	1000	2500	10000
BH216	0-0.1	Coarse	700	1000	2500	10000
BH216	1-1.3	Fine	800	1000	3500	10000
BH217	0-0.1	Coarse	700	1000	2500	10000
BH217	0.2-0.3	Coarse	700	1000	2500	10000
BH218	0-0.1	Coarse	700	1000	2500	10000
BH219	0-0.1	Coarse	700	1000	2500	10000
BH219 - [LAB_DUP]	0-0.1	Coarse	700	1000	2500	10000
BH219	0.5-0.6	Coarse	700	1000	2500	10000
SDUP201	BH217 (0-0.1m)	Coarse	700	1000	2500	10000
SDUP202	BH207 (0-0.1m)	Coarse	700	1000	2500	10000

TABLE 54 SOIL LABORATORY RESULTS COMPARED TO DIRECT CONTACT CRITERIA All data in mg/kg unless stated otherwise

Analyte		C ₆ -C ₁₀	>C10-C16	>C ₁₆ -C ₃₄	>C ₃₄ -C ₄₀	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PID
PQL - Envirolab Services		25	50	100	100	0.2	0.5	1	1	1	I
CRC 2011 -Direct contac	t Criteria	82,000	62,000	85,000	120,000	1,100	120,000	85,000	130,000	29,000	1
Site Use				Intro	usive Maintena	nce Worker - DI	RECT SOIL CON	ТАСТ			
Sample Reference	Sample Depth										
BH201	0.1-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.2
BH201 - [LAB_DUP]	0.1-0.2	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.2
BH201	0.9-1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH203	0.1-0.2	<25	<50	460	680	<0.2	<0.5	<1	<1	<1	0.2
BH203 - [LAB_DUP]	0.1-0.2	<25	<50	400	610	<0.2	<0.5	<1	<1	<1	0.2
BH203	0.3-0.4	<25	<50	130	140	<0.2	<0.5	<1	<1	<1	0
BH207	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH208	0-0.1	<25	<50	200	100	<0.2	<0.5	<1	<1	<1	0
BH208	0.45-0.55	<25	<50	260	<100	<0.2	<0.5	<1	<1	<1	0
BH209	0-0.1	<25	65	440	190	<0.2	<0.5	<1	<1	<1	0
BH209	0.6-0.8	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH210	0.05-0.1	<25	<50	370	490	<0.2	<0.5	<1	<1	<1	1
BH210	0.55-0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	1.8
BH211	0.2-0.3	<25	<50	120	<100	<0.2	<0.5	<1	<1	<1	0
BH211 - [LAB_DUP]	0.2-0.3	<25	<50	140	<100	<0.2	<0.5	<1	<1	<1	0
BH212	0.1-0.15	<25	<50	160	200	<0.2	<0.5	<1	<1	<1	0
BH213	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH214	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.4
BH214	0.3-0.4	<25	<50	140	<100	<0.2	<0.5	<1	<1	<1	0.5
BH215	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH215	0.2-0.3	<25	<50	100	<100	<0.2	<0.5	<1	<1	<1	0
BH216	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH216	1-1.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH217	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH217	0.2-0.3	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.2
BH218	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH219	0-0.1	<25	<50	100	130	<0.2	<0.5	<1	<1	<1	0
BH219 - [LAB_DUP]	0-0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0
BH219	0.5-0.6	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	0.3
SDUP201	BH217 (0-0.1m)	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<1	- 1
SDUP202	BH207 (0-0.1m)	<25	<50	<100	<100	<0.2	<0.5	<1	<3	<1	-
Total Number of Sample	25	31	31	31	31	31	31	31	31	31	29
Maximum Value		<pql< td=""><td>65</td><td>460</td><td>680</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	65	460	680	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1.8</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>1.8</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>1.8</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>1.8</td></pql<></td></pql<>	<pql< td=""><td>1.8</td></pql<>	1.8

TABLE S5 ASBESTOS QUANTIFICATION - FIELD OBSERVATIONS AND LABORATORY RESULTS HSL-A: Residential with garden/accessible soils; children's day care centers; preschools; and primary schools

FIELD DATA LABORATORY DATA Sample Sample ACM in top c-air (1) Mass (g) Mass [Asbestos [Asbestos from Mass Asbestos in ACM <7mm (-) ACM <7mm soil] (%w/w) Mass [Asbesto Lab Sample Sample Date Sampled Mass ACM (g) Ashestos in from ACM in Mass ACM <7mm (g) Mass FA (g) Asbestos in from FA in Report Sample refeference Asbestos ID in soil (AS4964) >0.1g/kg Trace Analysis Depth . Mass (g) Soil (L) ACM (g) soil] (%w/w) FA (g) soil] (%w/w Number 100mm SAC 0.001 0.001 0.01 BH201 0-0.05 10L 1,160 No ACM observed 0-0.05 710.96 31/01/2025 No No ACM <7mm observed No FA observed 371803 BH201 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detect 31/01/2025 BH201 0.1-0.25 No 10L 1,270 No ACM observed No ACM <7mm observed No FA observed 371803 BH201 0.6-0.8 153.98 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detecte 0.9-1 715.12 371803 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected BH201 No asbestos detect <10L 60 No ACM observed 15/01/2025 BH203 0.1-0.4 No No ACM <7mm observed No FA observed 370762 BH203 0.1-0.2 828.21 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detecte ---15/01/2025 BH203 0.5-0.8 No <10L 150 No ACM observed No ACM <7mm observed No FA observed <10L 305 No ACM observed 16/01/2025 BH205 0.1-0.5 No No ACM <7mm observed No FA observed ---15/01/2025 BH206 0-0.05 No <10L 776 No ACM observed No ACM <7mm observed No FA observed ---BH207 0-0.1 10L 1,235 No ACM observed 370762 0-0.1 775.06 16/01/2025 No No ACM <7mm observed No FA observed BH207 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detect 31/01/2025 BH208 0-0.1 No 10L 1,055 No ACM observed ---No ACM <7mm observed No FA observed 371803 BH208 0-0.1 286.88 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detecte 371803 BH208 0.45-0.55 731.51 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detecte 31/01/2025 0-0.1 No 10L 1,025 No ACM observed No FA observed BH209 No ACM <7mm observed ---371803 BH209 0.85-0.95 431.65 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detect 370762 0.05-0.1 237 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected ---BH210 No asbestos detecte 370762 BH211 0.2-0.3 407.35 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detecte ---No ACM <7mm observed 0.1-0.15 717.73 16/01/2025 BH212 0.15-0.45 No <10L 85 No ACM observed 370762 BH212 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No FA observed No asbestos detecto 371803 BH213 0.3-0.5 670.67 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detecte ------370762 BH214 0.2-0.3 478.05 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detecte ---15/01/2025 BH215 0-0.1 No ACM <7mm observed No FA observed 0-0.1 926.09 No 10L 1,488 No ACM observed 370762 BH215 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detecte No ACM <7mm observed 15/01/2025 BH215 0.2-0.5 No 10L 1,165 No ACM observed No FA observed 16/01/2025 BH216 0-0.1 No 10L 1,265 No ACM observed No ACM <7mm observed No FA observed 370762 BH216 0-0.1 939.21 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detecto 16/01/2025 BH216 0.1-0.2 No 10L 1,070 No ACM observed No ACM <7mm observed No FA observed 16/01/2025 BH216 0.4-0.7 No <10L 215 No ACM observed No ACM <7mm observed No FA observed 16/01/2025 BH216 0.9-1.3 No <10L 225 No ACM observed No ACM <7mm observed No FA observed 15/01/2025 BH217 0-0.1 No 10L 1,322 No ACM observed No ACM <7mm observed No FA observed 370762 BH217 0-0.1 869.43 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detecte 15/01/2025 BH217 0.1-0.3 No 10L 1,014 No ACM observed No FA observed No ACM <7mm observed 15/01/2025 BH219 0-01 No 10L 1.003 No ACM observed No ACM <7mm observed No FA observed 370762 BH219 0-0.1 920.43 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detect 15/01/2025 BH219 0.1-0.5 No 10L 1,215 No ACM observed No ACM <7mm observed No FA observed ---370762 BH219 0.5-0.6 808.71 No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected No asbestos detected 15/01/2025 BH219 0.7-1 No 10L 74 No ACM observed No ACM <7mm observed No FA observed VALUE centration above the SAC

	Total Asbestos (g/kg)	Asbestos ID in soil <0.1g/kg	ACM >7mm Estimation (g)	FA and AF Estimation (g)	ACM >7mm Estimation %(w/w)	FA and AF Estimation %(w/w)
					0.01	0.001
ed	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
ed	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
ed	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
ed	<0.1	Chrysotile	-	0.0001	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
d	<0.1	No visible asbestos detected	-	-	<0.01	<0.001
_						

TABLE S6 SOIL LABORATORY RESULTS COMPARED TO NEPM 2013 EILs AND ESLS

All data in mg/kg unless stated otherwise

Land Use Category												URBAN RESIDE	NTIAL AND PUBL	IC OPEN SPAC	E								
									AGED HEAV	Y METALS-EILs			EIL	_S					ESLs				
				pН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(a)P
PQL - Envirolab Service	s			-	1	-	4	1	1	1	1	1	1	0.1	25	50	100	100	0.2	0.5	1	1	0.05
Ambient Background Co	oncentration (ABC)			-		-	NSL	13	28	163	5	122	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL	NSL
Sample Reference	Sample Depth	Sample Description	Soil Texture																				
BH201	0.1-0.2	Fill: Silty Gravel	Coarse	NA	NA	NA	<4	15	43	6	7	29	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH201 - [LAB_DUP]	0.1-0.2	Fill: Silty Gravel	Coarse	NA	NA	NA	<4	17	50	6	9	28	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH201	0.9-1	Fill: Silty Sandy Clay	Fine	NA	NA	NA	6	15	38	130	3	120	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.79
BH203	0.1-0.2	Fill: Silty Sand	Coarse	7.9	8.53	NA	<4	17	89	32	26	54	<1	<0.1	<25	<50	460	680	<0.2	<0.5	<1	<1	0.74
BH203 - [LAB_DUP]	0.1-0.2	Fill: Silty Sand	Coarse	NA	NA	NA	<4	18	74	67	22	79	<1	<0.1	<25	<50	400	610	<0.2	<0.5	<1	<1	0.58
BH203 - [TRIPLICATE] BH203	0.1-0.2	Fill: Silty Sand Fill: Silty Sandy Clay	Coarse Fine	7.9 NA	8.53 NA	NA	<4	11	32	290 120	6	400 84	NA <1	NA	NA <25	NA <50	NA 130	NA 140	NA <0.2	NA <0.5	NA <1	NA <1	0.5
BH203 BH207	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	4 <4	12	20	120	8	44	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.06
BH208	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	5	12	15	36	6	67	<1	<0.1	<25	<50	200	100	<0.2	<0.5	<1	<1	0.5
BH208	0.45-0.55	Fill: Silty Sandy Clay	Fine	NA	NA	NA	7	22	11	84	10	78	<1	NA	<25	<50	260	<100	<0.2	<0.5	<1	<1	3.3
BH209	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	4	14	24	55	6	160	<1	<0.1	<25	65	440	190	<0.2	<0.5	<1	<1	0.2
BH209	0.6-0.8	Fill: Sandy Clay	Fine	NA	NA	NA	5	20	<1	23	2	12	<1	NA	<25	<50	<100	<100	<0.2	< 0.5	<1	<1	0.07
BH210	0.05-0.1	Fill: Gravel	Coarse	NA	NA	NA	<4	5	50	9	29	25	<1	<0.1	<25	<50	370	490	<0.2	< 0.5	<1	<1	< 0.05
BH210	0.55-0.6	Fill: Silty Sandy Clay	Fine	7.7	11	NA	4	10	18	140	4	250	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.4
BH211	0.2-0.3	Fill: Silty Sand	Coarse	7.9	8.53	NA	4	12	32	250	7	400	<1	<0.1	<25	<50	120	<100	<0.2	<0.5	<1	<1	3.3
BH211 - [LAB_DUP]	0.2-0.3	Fill: Silty Sand	Coarse	7.9	8.53	NA	10	13	36	240	15	400	<1	<0.1	<25	<50	140	<100	<0.2	<0.5	<1	<1	3.5
BH212	0.1-0.15	Fill: Gravel	Coarse	NA	NA	NA	5	12	35	29	33	47	<1	<0.1	<25	<50	160	200	<0.2	<0.5	<1	<1	0.4
BH213	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	<4	17	15	17	10	42	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.07
BH214	0.2-0.3	Fill: Silty Sand	Coarse	NA	NA	NA	6	12	24	92	3	73	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.2
BH214	0.3-0.4	Fill: Silty Sand	Coarse	7.9	8.53	NA	<4	7	260	100	2	83	<1	NA	<25	<50	140	<100	<0.2	<0.5	<1	<1	1.9
BH215	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	<4	12	17	25	8	60	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.3
BH215	0.2-0.3	Fill: Silty Sand	Coarse	NA	NA	NA	<4	12	9	65	4	140	<1	NA	<25	<50	100	<100	<0.2	<0.5	<1	<1	0.4
BH216	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	<4	11	16	9	5	35	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	< 0.05
BH216	1-1.3	Fill: Sandy Clay	Fine	NA	NA	NA	<4	15	<1	4	1 8	16 60	<1	NA	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH217 BH217	0-0.1 0.2-0.3	Fill: Silty Sand	Coarse	NA 7.9	NA 8.53	NA	<4	15 12	21 25	18	8	450	<1	<0.1 NA	<25	<50	<100 <100	<100 <100	<0.2	<0.5 <0.5	<1	<1	0.1
BH217 BH218	0.2-0.3	Fill: Silty Sand Fill: Silty Sand	Coarse Coarse	NA	8.53 NA	NA	<4	9	19	1/0	6	110	<1 <1	<0.1	<25	<50 <50	<100	<100	<0.2	<0.5	<1 <1	<1 <1	0.62
BH218 BH219	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	<4	13	27	13	9	44	<1	<0.1	<25	<50	100	130	<0.2	<0.5	<1	<1	0.82
BH219 - [LAB_DUP]	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	<4	15	21	13	7	44	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	<0.05
BH219 [EAB_DOIL]	0.5-0.6	Fill Silty Sand	Coarse	NA	NA	NA	<4	9	7	23	2	19	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.2
SDUP201	BH217 (0-0.1m)	Fill: Silty Sand	Coarse	NA	NA	NA	<4	13	23	20	14	50	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<1	0.2
SDUP202	BH207 (0-0.1m)	Fill: Silty Sand	Coarse	NA	NA	NA	<4.0	12	18	17	5.9	60	<1	<0.1	<25	<50	<100	<100	<0.2	<0.5	<1	<3	0.55
													1		1						*		1
Total Number of Samp	les			7	7	0	32	32	32	32	32	32	31	22	31	31	31	31	31	31	31	31	31
Maximum Value				7.9	11	NA	10	22	260	290	33	450	<pql< td=""><td><pql< td=""><td><pql< td=""><td>65</td><td>460</td><td>680</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.5</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>65</td><td>460</td><td>680</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.5</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>65</td><td>460</td><td>680</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.5</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	65	460	680	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>3.5</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>3.5</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>3.5</td></pql<></td></pql<>	<pql< td=""><td>3.5</td></pql<>	3.5

Concentration above the SAC VALUE Concentration above the PQL Bold The guideline corresponding to the elevated value is highlighted in grey in the EIL and ESL Assessment Criteria Table below

Sample Reference	Sample Depth	Sample Description	Soil Texture	pН	CEC (cmolc/kg)	Clay Content (% clay)	Arsenic	Chromium	Copper	Lead	Nickel	Zinc	Naphthalene	DDT	C ₆ -C ₁₀ (F1)	>C ₁₀ -C ₁₆ (F2)	>C ₁₆ -C ₃₄ (F3)	>C ₃₄ -C ₄₀ (F4)	Benzene	Toluene	Ethylbenzene	Total Xylenes	B(
BH201	0.1-0.2	Fill: Silty Gravel	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	2
BH201 - [LAB_DUP]	0.1-0.2	Fill: Silty Gravel	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH201	0.9-1	Fill: Silty Sandy Clay	Fine	NA	NA	NA	100	200	90	1300	35	190	170		180	120	1300	5600	65	105	125	45	
BH203	0.1-0.2	Fill: Silty Sand	Coarse	7.9	8.53	NA	100	200	220	1300	180	520	170	180	180	120	300	2800	50	85	70	105	
BH203 - [LAB_DUP]	0.1-0.2	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH203 - [TRIPLICATE]	0.1-0.2	Fill: Silty Sand	Coarse	7.9	8.53	NA	100	200	220	1300	180	520											
BH203	0.3-0.4	Fill: Silty Sandy Clay	Fine	NA	NA	NA	100	200	90	1300	35	190	170		180	120	1300	5600	65	105	125	45	
BH207	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH208	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH208	0.45-0.55	Fill: Silty Sandy Clay	Fine	NA	NA	NA	100	200	90	1300	35	190	170		180	120	1300	5600	65	105	125	45	
BH209	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH209	0.6-0.8	Fill: Sandy Clay	Fine	NA	NA	NA	100	200	90	1300	35	190	170		180	120	1300	5600	65	105	125	45	
BH210	0.05-0.1	Fill: Gravel	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH210	0.55-0.6	Fill: Silty Sandy Clay	Fine	7.7	11	NA	100	200	240	1300	280	820	170		180	120	1300	5600	65	105	125	45	
BH211	0.2-0.3	Fill: Silty Sand	Coarse	7.9	8.53	NA	100	200	220	1300	180	520	170	180	180	120	300	2800	50	85	70	105	
BH211 - [LAB_DUP]	0.2-0.3	Fill: Silty Sand	Coarse	7.9	8.53	NA	100	200	220	1300	180	520	170	180	180	120	300	2800	50	85	70	105	
BH212	0.1-0.15	Fill: Gravel	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH213	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH214	0.2-0.3	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH214	0.3-0.4	Fill: Silty Sand	Coarse	7.9	8.53	NA	100	200	220	1300	180	520	170		180	120	300	2800	50	85	70	105	
BH215	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH215	0.2-0.3	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170		180	120	300	2800	50	85	70	105	
BH216	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH216	1-1.3	Fill: Sandy Clay	Fine	NA	NA	NA	100	200	90	1300	35	190	170		180	120	1300	5600	65	105	125	45	
BH217	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH217	0.2-0.3	Fill: Silty Sand	Coarse	7.9	8.53	NA	100	200	220	1300	180	520	170		180	120	300	2800	50	85	70	105	
BH218	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH219	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH219 - [LAB_DUP]	0-0.1	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
BH219	0.5-0.6	Fill Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
SDUP201	BH217 (0-0.1m)	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	
SDUP202	BH207 (0-0.1m)	Fill: Silty Sand	Coarse	NA	NA	NA	100	200	90	1300	35	190	170	180	180	120	300	2800	50	85	70	105	

EIL AND ESL ASSESSMENT CRITERIA

B(a)P	
0.05	
NSL	

INSL	
<0.05	
<0.05	
0.79	
0.74	

0.06	
0.5	
3.3	
0.2	
0.07	
<0.05	
0.4	
3.3	
3.5	
0.4	
0.07	
0.2	
1.9	
0.3	
0.4	
<0.05	
<0.05	
0.1	
0.4	

B(a)P	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	
20	

20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20
20

SOIL LABORATORY RESULTS COMPARED TO WASTE CLASSIFICATION GUIDELINES

All data in mg/kg unless stated otherwise

Copper 1 1 100 NSL 1900 NSL 400 NSL 7600 NSL	1 1 NSL 10	d Mercury	Nickel	Zinc	Total	B(a)P	Total	Chloropyrifos	Total Moderately	Total	PCBs	C ₆ -C ₉	C ₁₀ -C ₁₄	C15-C28	C29-C36	Total	Benzene	Toluene	Ethyl	Total	ASBESTOS FIBR
1 1 100 NSL 1900 NSL 400 NSL	1 1 NSL 10		INICKEI	ZIIIC															, .		ASDESTUS FID
100 NSL 1900 NSL 400 NSL	NSL 10	0.1			PAHs		Endosulfans		Harmful	Scheduled						C ₁₀ -C ₃₆			benzene	Xylenes	
1900 NSL 400 NSL		0.1	1	1	-	0.05	0.1	0.1	0.1	0.1	0.1	25	50	100	100	50	0.2	0.5	1	1	100
400 NSL) 4	40	NSL	200	0.8	60	4	250	50	50	650		NSL		10,000	10	288	600	1,000	-
	VSL 150	0 50	1050	NSL	200	10	108	7.5	250	50	50	650		NSL		10,000	18	518	1,080	1,800	-
7600 NSL	NSL 40) 16	160	NSL	800	3.2	240	16	1000	50	50	2600		NSL		40,000	40	1,152	2,400	4,000	-
	NSL 600	0 200	4200	NSL	800	23	432	30	1000	50	50	2600		NSL		40,000	72	2,073	4,320	7,200	-
														-							
15 43	43 6	<0.1	7	29	< 0.05	<0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
17 50		<0.1	9	28	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
15 38	38 13	0.4	3	120	8.1	0.79	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
17 89	89 32	<0.1	26	54	9.5	0.74	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	220	430	650	<0.2	<0.5	<1	<1	Detected
18 74			22	79	6.4	0.58	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	180	400	580	<0.2	<0.5	<1	<1	NA
11 32			6	400	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
12 20			4	84	5	0.5	NA	NA	NA	NA	NA	<25	<50	<100	100	100	<0.2	<0.5	<1	<1	NA
15 23		<0.1	8	44 67	0.06	0.06	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	< 0.5	<1	<1	Not Detected
12 15 22 11		<0.1 0.2	6 10	67 78	6.2 50	0.5	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<0.1 NA	<25 <25	<50 <50	<100 180	180 110	180 290	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	NA
14 24			6	160	1.7	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	59	270	260	589	<0.2	<0.5	<1	<1	NA
20 <1		<0.1	2	12	0.07	0.07	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
5 50		<0.1	29	25	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	120	390	510	<0.2	<0.5	<1	<1	Not Detected
10 18			4	250	3.2	0.4	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
12 32			7	400	37	3.3	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
13 36			15	400	40	3.5	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	100	<100	100	<0.2	<0.5	<1	<1	NA
12 35	35 29	<0.1	33	47	4.6	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	150	150	<0.2	<0.5	<1	<1	Not Detected
17 15	15 17	<0.1	10	42	0.4	0.07	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
12 24			3	73	1.4	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
7 260			2	83	23	1.9	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
12 17			8	60	3.6	0.3	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
12 9		0.1	4	140	4.3	0.4	NA 10.1	NA	NA	NA 10.1	NA -0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
11 16		<0.1	5	35 16	<0.05	<0.05	<0.1 NA	<0.1 NA	<0.1 NA	<0.1	<0.1	<25	<50 <50	<100 <100	<100	<50	<0.2	< 0.5	<1	<1	Not Detected NA
15 <1 15 21		<0.1	8	60	<0.05 0.95	<0.05 0.1	<0.1	<0.1	<0.1	NA <0.1	NA <0.1	<25 <25	<50	<100	<100 <100	<50 <50	<0.2 <0.2	<0.5 <0.5	<1 <1	<1 <1	Not Detected
12 25			7	450	5	0.4	NA	NA	NA	NA	NA	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
9 19			6	110	6.6	0.62	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
13 27		<0.1	9	44	1.5	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
15 21	21 12	<0.1	7	45	< 0.05	< 0.05	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
9 7	7 23	<0.1	2	19	2.7	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	Not Detected
13 23			14	50	1.4	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<1	NA
12 18	18 17	<0.10	5.9	60	6.6	0.55	<0.1	<0.1	<0.1	<0.1	<0.1	<25	<50	<100	<100	<50	<0.2	<0.5	<1	<3	NA
32 32	32 32	32	32	32	31	31	22	22	22	22	22	31	31	31	31	31	31	31	31	31	11
22 260			33	450	50	3.5	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>59</td><td>270</td><td>430</td><td>650</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>59</td><td>270</td><td>430</td><td>650</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>59</td><td>270</td><td>430</td><td>650</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>59</td><td>270</td><td>430</td><td>650</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>59</td><td>270</td><td>430</td><td>650</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td>59</td><td>270</td><td>430</td><td>650</td><td><pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<></td></pql<>	59	270	430	650	<pql< td=""><td><pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<></td></pql<>	<pql< td=""><td><pql< td=""><td>Detected</td></pql<></td></pql<>	<pql< td=""><td>Detected</td></pql<>	Detected
							1														
		NC	NC	NC	NC	25	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
																					NC NC
																					NC
																					NC
NC NC			NC	NC	NC		NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
NO NO		C NC 75 NC 78.4 NC 95	NC 75 NC NC 78.4 NC NC 95 NC NC NC 114.8 NC	NC 75 NC NC NC 78.4 NC NC NC 95 NC NC NC NC 114.8 NC NC	NC NC NC NC NC NC 75.4 NC NC NC NC NC 95 NC NC NC NC NC 114.8 NC NC NC	NC NC NC NC NC NC NC 78.4 NC NC NC NC NC NC 95 NC NC NC NC NC NC 114.8 NC NC NC NC	NC NC NC NC NC 0.63 NC NC 78.4 NC NC NC 0.92 NC NC 95 NC NC NC NC 95	NC NC NC NC NC NC 0.63 NC NC NC 78.4 NC NC NC NC 0.92 NC NC NC 95 NC NC NC NC 95 NC NC NC 114.8 NC NC NC NC 0.992 NC	NC NC<	NC 75 NC NC NC NC 0.63 NC NC NC NC NC 78.4 NC NC NC NC 0.92 NC NC NC NC 95 NC NC NC NC 95 NC NC NC 114.8 NC NC NC NC 0.992 NC NC NC	C NC 75 NC NC NC NC 0.63 NC NC NC NC C NC 78.4 NC NC NC NC 0.92 NC NC NC NC C NC 95 NC NC NC NC 95 NC NC NC C NC 114.8 NC NC NC NC 0.992 NC NC NC NC	NC NC NC NC NC NC 0.63 NC NC NC NC NC NC NC 78.4 NC NC NC NC 0.92 NC NC <t< td=""><td>NC 75 NC NC NC NC 0.63 NC N</td><td>NC 75 NC NC NC NC 0.63 NC N</td><td>NC 75 NC NC NC NC 0.63 NC N</td><td>NC 75 NC NC NC NC 0.63 NC N</td><td>NC 75 NC NC NC NC 0.63 NC N</td><td>NC 75 NC NC NC NC 0.63 NC N</td><td>NC 75 NC NC NC 0.63 NC N</td><td>NC 75 NC NC NC 0.63 NC <</td><td>NC 75 NC NC NC 0.63 NC <</td></t<>	NC 75 NC NC NC NC 0.63 NC N	NC 75 NC NC NC NC 0.63 NC N	NC 75 NC NC NC NC 0.63 NC N	NC 75 NC NC NC NC 0.63 NC N	NC 75 NC NC NC NC 0.63 NC N	NC 75 NC NC NC NC 0.63 NC N	NC 75 NC NC NC 0.63 NC N	NC 75 NC NC NC 0.63 NC <	NC 75 NC NC NC 0.63 NC <

SOIL LABORATORY TCLP RESULTS

All data in mg/L unless stated otherwise

			Lead	B(a)P
PQL - Envirolab Service	es		0.03	0.001
TCLP1 - General Solid	Waste		5	0.04
TCLP2 - Restricted Soli	d Waste		20	0.16
TCLP3 - Hazardous Wa	iste		>20	>0.16
Sample Reference	Sample Depth	Sample Description		
BH201	0.9-1.0	Fill: Silty Sandy Clay	0.34	NA
BH201 - LAB DUP	0.9-1.0	Fill: Silty Sandy Clay	0.34	NA
BH203	0.1-0.2	Fill: Silty Sand	0.06	NA
BH208	0.45-0.55	Fill: Silty Sandy Clay	NA	<0.0001
BH211	0.2-0.3	Fill: Silty Sand	0.1	<0.0001
BH211 - LAB DUP	0.2-0.3	Fill: Silty Sand	NA	<0.0001
BH214	0.3-0.4	Fill: Silty Sand	NA	<0.0001
BH217	0.2-0.3	Fill: Silty Sand	0.3	NA
BH218	0.3-0.45	Fill: Silty Sand	<0.07	NA
Total Number of sar	nples		6	4
Maximum Value			0.34	<pql< td=""></pql<>
General Solid Waste			VALUE	
Restricted Solid Waste Hazardous Waste	2		VALUE	
Concentration above I			Bold	

BLE Q1 IL QA/QC SUMMARY																																																	
	RH C6 - C10 RH >C10-C16	RH >C16-C34	rRH >C34-C40 Senzene	oluene	etnylbenzene n+p-xylene	-Xylene	Vaphthalene	Acenaphthylene Acenaph-thene	luorene	henanthrene	Anthracene	Jyrene	3enzo(a)anthracene	Chrysene Berzo(b i+k)fluoranthene	serzo(p.,)+к)⊓uoranmene 3enzo(a)pyrene	ndeno(1,2,3-c,d)pyrene)ibenzo(a,h)anthra-cene	3enzo(g,h,i)perylene HCB	ipha- BHC	Jamma- BHC	beta- BHC	teptacnior letta- BHC	Marin	deptachlor Epoxide 3amma- Chlordane	Ipha- chlordane	Endosulfan I	09- DUE Dieldrin	Endrin	p- DDD Endosulfan II	p- DDT	Endrin Aldehyde	Endosulfan Sulphate Aethoxychlor	vzinphos-methyl (Guthior	3romophos-ethyl Chlorovriahos	Chlorpyriphos-methyl	Diazinon	Dichlorvos	Dimethoate Ethion	-enitrothion	Aalathion	arathion	Ronnel Total PCBS	Arsenic	Cadmium	Chromium	Copper	.ead	dercury dickel	
PQL Envirolab SYD	25 50	100 1	00 0.2	0.5	1 2	1	0.1 0	0.1 0.1	1 0.1	0.1	0.1 0.1	0.1	0.1	0.1 0	.2 0.05	0.1	0.1	0.1 0.1	1 0.1	0.1	0.1 0.	.1 0.1	0.1	0.1 0.1	0.1	0.1 0.	.1 0.1	0.1	0.1 0.1	1 0.1	0.1	0.1 0.1	0.1	0.1 0.1	1 0.1	0.1	0.1	0.1 0.1	0.1	0.1	0.1 0	0.1 0.1	4	0.4	1	1	1	0.1 1	
PQL Envirolab VIC	25 50		00 0.2	0.5 1	.0 2.0	1.0	0.1 0	0.1 0.1	1 0.1	0.1	0.1 0.1	0.1	0.1	0.1 0.	2 0.1	0.1	0.1	0.1 0.1	1 0.1	0.1	0.1 0.	.1 0.1	0.1	0.1 0.1	0.1	0.1 0.	.1 0.1	0.1	0.1 0.1	1 0.1	0.1	0.1 0.1	0.1	0.1 0.	1 0.1	0.1	0.1	0.1 0.1	0.1	0.1	0.1 0	0.1 0.1	4.0					0.1 1.0	,
BH217 0-0.1	<25 <50	<100 <	100 <0.2	<0.5	<1 <2	<1	<0.1 <	0.1 <0.	.1 <0.1	<0.1	<0.1 0.2	0.2	0.1	0.1 <0	0.2 0.1	0.1	<0.1	0.1 <0.	.1 <0.1	<0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <0.	1 <0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <0.	.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1 <	:0.1 <0.1	1 <0.1	<0.1	<0.1 <	0.1 <0.1	<4	<0.4	15	21	18	<0.1 8	
ory SDUP201 BH217 (0-0.1m)	<25 <50	<100 <	100 <0.2	<0.5	<1 <2	<1	<0.1 <	0.1 <0.	.1 <0.1	0.1	<0.1 0.2	0.2	0.1	0.1 0.	.2 0.2	< 0.1	<0.1	0.1 <0.	.1 <0.1	<0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <0.	1 <0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <0.	.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1 <	0.1 <0.1	1 <0.1	< 0.1	<0.1 <	0.1 <0.1	<4	<0.4	13	23	20	<0.1 14	
ate MEAN	nc nc	nc	nc nc	nc	nc nc	nc	nc	nc no	c nc	0.075	nc 0.2	0.2	0.1	0.1 0.1	15 0.15	5 0.075	nc	0.1 nc	c nc	nc	nc r	nc nc	nc	nc no	nc	nc n	nc nc	nc	nc nc	c nc	nc	nc nc	nc	nc n	nc	nc	nc	nc nc	nc	nc	nc	nc nc	nc	nc	14	22	19	nc 11	1
RPD %	nc nc	nc	nc nc	nc	nc nc	nc	nc	nc no	c nc	67%	nc 0%	6 0%	0%	0% 67	7% 67%	67%	nc	0% nc	c nc	nc	nc r	nc nc	nc	nc no	nc	nc n	nc nc	nc	nc nc	c nc	nc	nc nc	nc	nc n	nc	nc	nc	nc nc	nc	nc	nc	nc nc	nc	nc	14%	9%	11%	nc 559	6 1
BH207 0-0.1	<25 <50	<100 <	100 <0.2	<0.5	<1 <2	<1	< 0.1 <	0.1 <0.	.1 <0.1	<0.1	<0.1 <0.1	1 <0.1	<0.1	<0.1 <0	0.2 0.06	5 <0.1	<0.1	<0.1 <0.	.1 <0.1	<0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <0.	1 <0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <0.	.1 <0.1		<0.1 <0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1 <	<0.1 <0.1	1 <0.1	<0.1	<0.1 <	0.1 <0.1	<4	<0.4	15	23	11	<0.1 8	
tory SDUP202 BH207 (0-0.1m)	<25 <50	<100 <	100 <0.2	<0.5	<1 <2	<1	<0.10 <0	0.10 <0.3	.10 <0.10		0.23 1.2	1.3		0.5 0.8		5 0.37		0.42 <0.	.1 <0.1	<0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <0	1 <0.1	<0.1 <0	0.1 <0.1	<0.1	<0.1 <0.	.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0	1 <0.1	<0.1	<0.1 <	<0.1 <0.1	1 <0.1	<0.1	<0.1 <	0.1 <0.1	<4.0	<0.40	12	18	17 •	0.10 5.9	/
ate MEAN	nc nc		nc nc	nc	nc nc		nc		c nc			25 0.675							c nc	nc	nc r	nc nc	nc	nc no	nc	nc n	nc nc	nc	nc nc	c nc	nc	nc nc	nc	nc n	nc nc	nc	nc	nc nc	nc	nc	nc	nc nc	nc	nc	13.5	20.5	14	nc 6.9	
RPD %	nc nc	nc	nc nc	nc	nc nc	nc	nc	nc no	c nc	175% 1	29% 184	<mark>% 185%</mark>	161% 1	156	6% 1619	% 152%	nc 1	.57% no	c nc	nc	nc r	nc nc	nc	nc no	nc	nc n	nc nc	nc	nc nc	c nc	nc	nc nc	nc	nc n	c nc	nc	nc	nc nc	nc	nc	nc	nc nc	nc	nc	22%	24%	43%	nc <u>30</u> 5	<u>é </u>
TB-S201 -	<25 <50	<100	100 <0.2	<0.5	1 0		<01 <	0.1 <0	1 <01	<01	01 0	1 <0.1	<0.1	<0.1 <0	12 <0.0	5 <01	<0.1	01																									-1	<0.4	<1	(1	<i>(</i> 1	<0.1 <1	
15/01/25	~25 ~50	100 1	100 \0.2	NO.5	~1 ~2	~1	~0.1 ~	0.1 \0.	.1 \0.1	~0.1	<0.1 <0.	1 \0.1	~0.1	NO.1 NO	J.Z \0.0.	5 \0.1	~0.1																-										~4	NU.4	~1	~1	~1	<0.1 <1	
15/01/25																																																	
FR-HA-201 µg/L	<10 180	<100 <	100 <1	<1	<1 <2	<1	-			-		-				-			-	-	-		-			-		-					-		-	-	-		-	-	-		< 0.05	< 0.01	< 0.01	< 0.01	<0.03 <0	.0005 <0.0	J2 <
16/01/25																																																	
																																																	-
TS-S201		-	- 82%	82% 8	1% 82%	81%	-			-		-	-			-	-		-	-	-				-	-		-		-	-		-		-	-	-		-		-		-	-		-	-	×	
15/01/25																																																	

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

ADWG:	AustralianDrinking Water Guidelines	PC
ANZG	Australian and New Zealand Guidelines	PC
B(a)P:	Benzo(a)pyrene	PC
CRC:	Cooperative Research Centre	RS
ESLs:	Ecological Screening Levels	RS
GIL:	Groundwater Investigation Levels	SA
HILs:	Health Investigation Levels	SS
HSLs:	Health Screening Levels	SS
HSL-SSA:	Health Screening Level-SiteSpecific Assessment	TB
NA:	Not Analysed	тс
NC:	Not Calculated	тс
NEPM:	National Environmental Protection Measure	TS
NHMRC:	National Health and Medical Research Council	TR
NL:	Not Limiting	UC
NSL:	No Set Limit	US
OCP:	Organochlorine Pesticides	V
OPP:	Organophosphorus Pesticides	W
PAHs:	Polycyclic Aromatic Hydrocarbons	
	Dorte nor million	

ppm: Parts per million

- CBs: Polychlorinated Biphenyls
- PCE:Perchloroethylene (Tetrachloroethylene or Tetrachloroethene)PQL:Practical Quantitation Limit
- **Rinsate Sample** RS:
- **SL:** Regional Screening Levels
- AC: Site Assessment Criteria
- SA: Site Specific Assessment
- SHSLs Site Specific Health Screening Levels
- Trip Blank В:
- CA: 1,1,1 Trichloroethane (methyl chloroform)
- **CE:** Trichloroethylene (Trichloroethene)
- Trip Spike S:
- **RH:** Total Recoverable Hydrocarbons
- JCL: Upper Level Confidence Limit on Mean Value
- **JSEPA** United States Environmental Protection Agency
 - **OCC:** Volatile Organic Chlorinated Compounds
 - **VHO:** World Health Organisation

TABLE G1 SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO ECOLOGICAL GILs SAC All results in $\mu g/L$ unless stated otherwise.

Aetals and Metalloids vrsenic (As III) cadmium chromium (SAC for Cr III adopted) copper ead otal Mercury (inorganic) lickel inc Aonocyclic Aromatic Hydrocarbons (BTEX Comp ienzene foluene thylbenzene n+p-xylene -xylene jotal Nglenes folatile Organic Compounds (VOCs), including cf bichlorodifluoromethane inloyl Chloride irgomomethane ichloroethane ichloroethane	1 1 2 1 2	Fresh Waters 24 0.2 3.3 1.4 3.4 0.06 11 8 950 180 80 75	1 <0.1 2 <1 <1 <0.05 1 4 <1	1 <0.1 2 <1 <1 <0.05 1	5 <0.1 2 <1 <1 <1 <0.05	<1 <0.1 1 2 <1	5 <0.1 2 <1
admium Chromium (SAC for Cr III adopted) Copper ead fotal Mercury (inorganic) lickel lickel licnc Monocyclic Aromatic Hydrocarbons (BTEX Comp Renzene foluene thylbenzene n+p-xylene h-xylene local xylenes /olatile Organic Compounds (VOCs), including cr Dichlorodifluoromethane chloromethane lichoromethane chloromethane chloromethane chlorotethane	0.1 1 1 0.05 1 1 0 0 1 1 1 1 2 1 2 1 2	0.2 3.3 1.4 3.4 0.06 11 8 950 180 80	<0.1 2 <1 <1 <0.05 1 4	<0.1 2 <1 <1 <0.05	<0.1 2 <1 <1	<0.1 1 2	<0.1 2 <1
Informium (SAC for Cr III adopted) Sopper ead fotal Mercury (inorganic) lickel inc Aonocyclic Aromatic Hydrocarbons (BTEX Comp Benzene foluene ithylbenzene n+p-xylene i-xylene iotal xylenes /otatile Organic Compounds (VOCs), including ch ichlorodifluoromethane inyl Chloride iromomethane iromomethane ihloroethane	1 1 0.05 1 1 0 0 1 1 1 1 2 1 2 1 2	3.3 1.4 3.4 0.06 11 8 950 180 80	2 <1 <0.05 1 4	2 <1 <1 <0.05	2 <1 <1	1 2	2 <1
Copper ead iotal Mercury (inorganic) lickel inc Aonocyclic Aromatic Hydrocarbons (BTEX Complements) Benzene ioluene thylbenzene n+p-xylene i-xylene iotal kylenes /olatile Organic Compounds (VOCs), including choichlorodifluoromethane Chloromethane rinyl Chloride ioromomethane ichloroethane ichloroethane	1 0.05 1 0unds) 1 1 1 2 1 2 1 2	1.4 3.4 0.06 11 8 950 180 80	<1 <1 <0.05 1 4	<1 <1 <0.05	<1 <1	2	<1
ead ead iotal Mercury (inorganic) lickel linc Monocyclic Aromatic Hydrocarbons (BTEX Comp Benzene ioluene ithylbenzene n+p-xylene i-xylene iotal xylenes /olatile Organic Compounds (VOCs), including ch Dichlorodifluoromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane	1 0.05 1 1 0unds) 1 1 1 2 1 2 1 2	3.4 0.06 11 8 950 180 80	<1 <0.05 1 4	<1 <0.05	<1		
Total Mercury (inorganic) Inorganic) Nickel Inic Monocyclic Aromatic Hydrocarbons (BTEX Comp Benzene Inic Senzene Inic Total kylbenzene Inic n+p-xylene Inic Hordital Organic Compounds (VOCs), including ch Dichlorodifluoromethane Chloromethane Inryl Chloride Iromomethane Inoroethane Inoroethane	0.05 1 1 0unds) 1 1 2 1 1 2 1 2	0.06 11 8 950 180 80	<0.05 1 4	<0.05			<1
lickel linc Vonocyclic Aromatic Hydrocarbons (BTEX Comp Benzene loluene lithylbenzene h-xylene local xylenes Volatile Organic Compounds (VOCs), including ch bichlorodifluoromethane lithoromethane	1 ounds) 1 1 2 1 2 1 2	11 8 950 180 80	1 4			<0.05	<0.05
Monocyclic Aromatic Hydrocarbons (BTEX Comp Benzene Foluene Sthylbenzene n+p-xylene Folal xylenes Molatile Organic Compounds (VOCs), including ch Dichlorodifluoromethane Schloromethane Schloromethane Finyl Chloride Foromomethane Schloromethane	ounds) 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	950 180 80			3	7	3
Aenzene ioluene ithylbenzene n+p-xylene iotal xylenes iotal xylenes iotal intervention (VOCs), including ch iotalic Organic Compounds (VOCs), including ch iotalicodifluoromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane ichloromethane	1 1 2 1 2	180 80	<1	4	4	71	6
oluene oluene othylbenzene n+p-xylene otal xylenes otal xylenes folatile Organic Compounds (VOCs), including ch bichlorodifluoromethane chloromethane finyl Chloride fromomethane chloroethane chloroethane	1 1 2 1 2	180 80	<1				
thylbenzene http://www.stillenzene http://wwwww.stillenzene http://w	1 2 1 2	80		NA	<1	<1	<1
n+p-xylene xylene Total xylenes folatile Organic Compounds (VOCs), including ch Dichlorodifluoromethane Chloromethane finyl Chloride foromomethane Chloroethane	2 1 2		<1	NA	<1	<1	<1
xylene fotal xylenes fotal xylenes fotal xylenes fotatile Organic Compounds (VOCs), including ch bichlorodifluoromethane finoromethane finyl Chloride foromomethane fihoroethane fihoroethane fihoroethane fihoroethane file foromethane file file file file file file file fil	1 2	75	<1	NA	<1	<1	<1
otal xylenes /olatile Organic Compounds (VOCs), including ct Dichlorodifluoromethane Chloromethane /inyl Chloride sromomethane Chloroethane	2		<2	NA	<2	<2	<2
Volatile Organic Compounds (VOCs), including c Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane		350	<1	NA	<1	<1	<1
Dichlorodifluoromethane Chloromethane Vinyl Chloride Bromomethane Chloroethane	nlorinated VC	NSL	<2	NA	<2	<2	<2
ihloromethane Vinyl Chloride Bromomethane ihloroethane	10		-10		.10	-10	.10
/inyl Chloride kromomethane chloroethane	10 10	NSL	<10	NA	<10	<10	<10
romomethane hloroethane	10	NSL 100	<10 <10	NA	<10 <10	<10 <10	<10 <10
Chloroethane	10	NSL	<10	NA	<10	<10	<10
	10	NSL	<10	NA	<10	<10	<10
	10	NSL	<10	NA	<10	<10	<10
,1-Dichloroethene	10	700	<1	NA	<10	<1	<10
rans-1,2-dichloroethene	1	NSL	<1	NA	<1	<1	<1
.,1-dichloroethane	1	90	<1	NA	<1	<1	<1
Cis-1,2-dichloroethene	1	NSL	<1	NA	<1	<1	<1
Bromochloromethane	1	NSL	<1	NA	<1	<1	<1
Chloroform	1	370	<1	NA	<1	4	<1
2,2-dichloropropane	1	NSL	<1	NA	<1	<1	<1
,,2-dichloroethane	1	1900	<1	NA	<1	<1	<1
.,1,1-trichloroethane	1	270	<1	NA	<1	<1	<1
.,1-dichloropropene	1	NSL	<1	NA	<1	<1	<1
Cyclohexane	1	NSL	<1	NA	<1	<1	<1
Carbon tetrachloride	1	240	<1	NA	<1	<1	<1
Benzene	1	950	<1	NA	<1	<1	<1
Dibromomethane	1	NSL	<1	NA	<1	<1	<1
,2-dichloropropane	1	900	<1	NA	<1	<1	<1
richloroethene	1	330	<1	NA	<1	<1	<1
romodichloromethane	1	NSL	<1	NA	<1	<1	<1
rans-1,3-dichloropropene	1	NSL	<1	NA	<1	<1	<1
is-1,3-dichloropropene	1	NSL	<1	NA	<1	<1	<1
.,1,2-trichloroethane	1	6500	<1	NA	<1	<1	<1
oluene	1	180	<1	NA	<1	<1	<1
.,3-dichloropropane	1	1100	<1	NA	<1	<1	<1
Dibromochloromethane	1	NSL	<1	NA	<1	<1	<1
.,2-dibromoethane	1	NSL	<1	NA	<1	<1	<1
etrachloroethene	1	70	<1	NA	<1	<1	<1
,1,1,2-tetrachloroethane	1	NSL	<1	NA	<1	<1	<1
Chlorobenzene	1	55	<1	NA	<1	<1	<1
ithylbenzene	1	80	<1	NA	<1	<1	<1
Bromoform	1	NSL	<1	NA	<1 <2	<1 <2	<1
n+p-xylene	1	75 NSL	<2 <1	NA	<1	<2	<2
tyrene ,1,2,2-tetrachloroethane	1	400	<1	NA	<1	<1	<1
p-xylene	1	350	<1	NA	<1	<1	<1
.,2,3-trichloropropane	1	NSL	<1	NA	<1	<1	<1
sopropylbenzene	1	30	<1	NA	<1	<1	<1
Bromobenzene	1	NSL	<1	NA	<1	<1	<1
i-propyl benzene	1	NSL	<1	NA	<1	<1	<1
e-chlorotoluene	1	NSL	<1	NA	<1	<1	<1
-chlorotoluene	1	NSL	<1	NA	<1	<1	<1
.,3,5-trimethyl benzene	1	NSL	<1	NA	<1	<1	<1
ert-butyl benzene	1	NSL	<1	NA	<1	<1	<1
.,2,4-trimethyl benzene	1	NSL	<1	NA	<1	<1	<1
.,3-dichlorobenzene	1	260	<1	NA	<1	<1	<1
ec-butyl benzene	1	NSL	<1	NA	<1	<1	<1
,4-dichlorobenzene	1	60	<1	NA	<1	<1	<1
-isopropyl toluene	1	NSL	<1	NA	<1	<1	<1
,2-dichlorobenzene	1	160	<1	NA	<1	<1	<1
i-butyl benzene	1	NSL	<1	NA	<1	<1	<1
,2-dibromo-3-chloropropane	1	NSL	<1	NA	<1	<1	<1
,2,4-trichlorobenzene	1	85	<1	NA	<1	<1	<1
lexachlorobutadiene	1	NSL	<1	NA	<1	<1	<1
.,2,3-trichlorobenzene	1	3	<1	NA	<1	<1	<1
olycyclic Aromatic Hydrocarbons (PAHs)							
laphthalene	0.2	16	<0.1	<0.1	<0.1	<0.1	<0.1
cenaphthylene	0.1	NSL	<0.1	<0.1	<0.1	0.1	<0.1
cenaphthene	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1
luorene	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1
henanthrene	0.1	0.6	<0.1	<0.1	<0.1	0.9	<0.1
nthracene	0.1	0.01	<0.1	<0.1	<0.1	0.2	<0.1
luoranthene	0.1	1	<0.1	<0.1	<0.1	1.2	<0.1
yrene	0.1	NSL	<0.1	<0.1	<0.1	1.2	<0.1
enzo(a)anthracene	0.1	NSL	<0.1	<0.1	<0.1	0.5	<0.1
hrysene	0.1	NSL	<0.1	<0.1	<0.1	0.6	<0.1
enzo(b,j+k)fluoranthene	0.2	NSL	<0.2	<0.2	<0.2	0.7	<0.2
lenzo(a)pyrene	0.1	0.1	<0.1	<0.1	<0.1	0.4	<0.1
ndeno(1,2,3-c,d)pyrene	0.1	NSL	<0.1	<0.1	<0.1	0.2	<0.1
libenzo(a,h)anthracene	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1
enzo(g,h,i)perylene	0.1	NSL	<0.1	<0.1	<0.1	0.3	<0.1

Copyright JK Environments

	PQL	Recreational			SAMPLES		
	Envirolab Services	(10 x NHMRC ADWG)	MW203	ME203 - LAB DUP	MW207	MW208	GWDUP-2 (MW203
Aetals and Metalloids rsenic (As III)	1	100	1	1	5	<1	5
admium hromium (total)	0.1	20 500	<0.1 2	<0.1 2	<0.1 2	<0.1 1	<0.1 2
opper ead	1	20000 100	<1 <1	<1 <1	<1 <1	2 <1	<1 <1
otal Mercury (inorganic) lickel	0.05	10 200	<0.05	<0.05	<0.05	<0.05	<0.05
inc	1	30000	4	4	4	71	6
Nonocyclic Aromatic Hydrocarbons (BTEX Comp enzene	ounds) 1	10	<1	NA	<1	<1	<1
oluene thylbenzene	1	8000 3000	<1 <1	NA	<1 <1	<1 <1	<1 <1
n+p-xylene -xylene	2	NSL	<2 <1	NA NA	<2 <1	<2 <1	<2 <1
otal xylenes	2	6000	<2	NA	<2	<2	<2
olatile Organic Compounds (VOCs), including c iichlorodifluoromethane	10	NSL	<10	NA	<10	<10	<10
hloromethane inyl Chloride	10	NSL 3	<10 <10	NA	<10 <10	<10 <10	<10 <10
romomethane hloroethane	10 10	NSL	<10 <10	NA NA	<10 <10	<10 <10	<10 <10
richlorofluoromethane	10	NSL	<10	NA	<10	<10	<10
,1-Dichloroethene rans-1,2-dichloroethene	1	300 600	<1 <1	NA NA	<1 <1	<1 <1	<1 <1
1-dichloroethane is-1,2-dichloroethene	1	NSL 600	<1 <1	NA	<1 <1	<1 <1	<1 <1
romochloromethane	1	2500	<1	NA	<1	<1	<1
hloroform ,2-dichloropropane	1	NSL	<1 <1	NA NA	<1 <1	4 <1	<1 <1
,2-dichloroethane ,1,1-trichloroethane	1	30 NSL	<1 <1	NA	<1 <1	<1 <1	<1 <1
1-dichloropropene	1	NSL	<1	NA	<1	<1	<1
yclohexane arbon tetrachloride	1	NSL 30	<1 <1	NA NA	<1 <1	<1 <1	<1 <1
enzene ibromomethane	1	10 NSL	<1 <1	NA NA	<1 <1	<1 <1	<1 <1
,2-dichloropropane richloroethene	1	NSL	<1 <1	NA	<1 <1	<1 <1	<1 <1
romodichloromethane	1	NSL	<1	NA	<1	<1	<1
ans-1,3-dichloropropene s-1,3-dichloropropene	1	1000 1000	<1 <1	NA NA	<1 <1	<1 <1	<1 <1
1,2-trichloroethane	1	NSL 8000	<1 <1	NA NA	<1 <1	<1 <1	<1 <1
3-dichloropropane	1	NSL	<1	NA	<1	<1	<1
ibromochloromethane ,2-dibromoethane	1	NSL NSL	<1 <1	NA NA	<1 <1	<1 <1	<1 <1
etrachloroethene ,1,1,2-tetrachloroethane	1	500 NSL	<1 <1	NA NA	<1 <1	<1 <1	<1 <1
hlorobenzene	1	3000	<1	NA	<1	<1	<1
thylbenzene romoform	1	3000 NSL	<1 <1	NA NA	<1 <1	<1 <1	<1 <1
tyrene	2	NSL 300	<2 <1	NA NA	<2 <1	<2 <1	<2 <1
1,2,2-tetrachloroethane	1	NSL	<1	NA	<1	<1	<1
-xylene ,2,3-trichloropropane	1	NSL	<1 <1	NA	<1 <1	<1 <1	<1 <1
opropylbenzene romobenzene	1	NSL	<1 <1	NA NA	<1 <1	<1 <1	<1 <1
propyl benzene -chlorotoluene	1	NSL	<1 <1	NA	<1 <1	<1	<1 <1
chlorotoluene	1	NSL	<1	NA	<1	<1	<1
,3,5-trimethyl benzene ert-butyl benzene	1	NSL	<1 <1	NA	<1 <1	<1 <1	<1
,2,4-trimethyl benzene ,3-dichlorobenzene	1	NSL 200	<1 <1	NA NA	<1 <1	<1 <1	<1 <1
ec-butyl benzene	1	NSL	<1	NA	<1	<1	<1
,4-dichlorobenzene -isopropyl toluene	1	400 NSL	<1 <1	NA NA	<1 <1	<1 <1	<1 <1
,2-dichlorobenzene -butyl benzene	1	15000 NSL	<1 <1	NA	<1 <1	<1	<1 <1
,2-dibromo-3-chloropropane	1	NSL	<1	NA	<1	<1	<1
,2,4-trichlorobenzene ,2,3-trichlorobenzene	1	300	<1 <1	NA	<1 <1	<1 <1	<1 <1
lexachlorobutadiene olycyclic Aromatic Hydrocarbons (PAHs)	1	7	<1	NA	<1	<1	<1
aphthalene cenaphthylene	0.2	NSL NSL	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 0.1	<0.1 <0.1
cenaphthene	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1
luorene henanthrene	0.1	NSL	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 0.9	<0.1
nthracene luoranthene	0.1	NSL NSL	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.2 1.2	<0.1 <0.1
yrene	0.1	NSL	<0.1	<0.1	<0.1	1.2	<0.1
enzo(a)anthracene hrysene	0.1	NSL NSL	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	0.5 0.6	<0.1
enzo(b,j+k)fluoranthene enzo(a)pyrene	0.2	NSL 0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	0.7	<0.2 <0.1
ndeno(1,2,3-c,d)pyrene	0.1	NSL	<0.1	<0.1	<0.1	0.2	<0.1
ibenzo(a,h)anthracene enzo(g,h,i)perylene	0.1	NSL NSL	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 0.3	<0.1 <0.1
rganochlorine Pesticides (OCPs) pha-BHC	0.001	NSL	NA	NA	NA	NA	NA
СВ	0.001	NSL	NA	NA	NA	NA	NA
eta-BHC amma-BHC	0.001	NSL NSL	NA NA	NA NA	NA	NA	NA
elta-BHC eptachlor	0.001	NSL	NA NA	NA NA	NA	NA NA	NA
eptachlor Epoxide	0.001	3	NA	NA	NA	NA	NA
ldrin ieldrin	0.001	3	NA NA	NA	NA NA	NA	NA
amma-Chlordane pha-Chlordane	0.001	20	NA NA	NA NA	NA	NA	NA
ndosulfan I	0.002	200	NA	NA	NA	NA	NA
ndosulfan II ndosulfan Sulphate	0.001	200	NA	NA	NA	NA	NA
DT p-DDD	0.001	90	NA NA	NA NA	NA	NA	NA
p-DDE ndrin	0.001	NSL	NA NA	NA NA	NA	NA	NA
ndrin Aldehyde	0.001	NSL	NA	NA	NA	NA	NA
lethoxychlor rganophosphate Pesticides (OPPs)	0.001	3,000	NA	NA	NA	NA	NA
zinphos-methyl (Guthion) romophos ethyl	0.02	300 100	NA NA	NA	NA	NA NA	NA
hlorpyriphos	0.009	100	NA	NA	NA	NA	NA
nlorpyriphos-methyl iazinon	0.01 0.01	NSL 40	NA NA	NA	NA NA	NA	NA
ichlorovos imethoate	0.01	50 70	NA NA	NA	NA	NA	NA
thion	0.01	40	NA	NA	NA	NA	NA
enitrothion Ialathion (Maldison)	0.05	70 700	NA NA	NA	NA NA	NA	NA
onnel (Fenchlorphos) arathion	0.01	NSL 200	NA NA	NA NA	NA	NA NA	NA
lethyl Parathion	0.01	7	NA	NA	NA	NA	NA
olychlorinated Biphenyls (PCBs) roclor 1016	0.01	NSL	NA	NA	NA	NA	NA
roclor 1221 roclor 1232	0.01	NSL	NA NA	NA NA	NA	NA	NA
roclor 1242	0.01	NSL	NA	NA	NA	NA	NA
roclor 1248 roclor 1254	0.01	NSL	NA NA	NA NA	NA NA	NA	NA
oclor 1260 otal PCBs	0.01	NSL NSL	NA NA	NA NA	NA NA	NA NA	NA
							. INM

Copyright JK Environments

TABLE G3

SUMMARY OF GROUNDWATER LABORATORY RESULTS COMPARED TO DRINKING WATER GILS

	PQL Envirolab Services	NHMRC ADWG 2011	MW203	ME203 - LAB DUP	SAMPLES MW207	MW208	GWDUP-20 (MW207
Aetals and Metalloids							
Arsenic (As III)	1 0.1	10	1 <0.1	1 <0.1	5 <0.1	<1 <0.1	5 <0.1
Cadmium Chromium (total)	0.1	2 50	<0.1 2	<0.1 2	<0.1 2	<0.1 1	<0.1 2
Copper	1	2000	<1	<1	<1	2	<1
ead	1	10	<1	<1	<1	<1	<1
Fotal Mercury (inorganic)	0.05	1	<0.05	<0.05	<0.05	<0.05	< 0.05
Nickel Zinc	1	20 3000	1 4	1 4	3	7 71	3
Monocyclic Aromatic Hydrocarbons (BTEX Cor		3000	4	4	4	/1	0
Benzene	1	1	<1	NA	<1	<1	<1
Foluene	1	800	<1	NA	<1	<1	<1
Ethylbenzene	1	300	<1	NA	<1	<1	<1
n+p-xylene	2	NSL	<2	NA	<2	<2	<2
p-xylene	1	NSL	<1	NA	<1	<1	<1
Fotal xylenes /olatile Organic Compounds (VOCs), including	2 chlo 1	600	<2	NA	<2	<2	<2
Dichlorodifluoromethane	10	NSL	<10	NA	<10	<10	<10
Chloromethane	10	NSL	<10	NA	<10	<10	<10
/inyl Chloride	10	0.3	<10	NA	<10	<10	<10
romomethane	10	NSL	<10	NA	<10	<10	<10
Chloroethane	10	NSL	<10	NA	<10	<10	<10
Trichlorofluoromethane	10	NSL 20	<10	NA	<10	<10	<10
,1-Dichloroethene	1	30	<1	NA	<1 <1	<1	<1
rans-1,2-dichloroethene	1	60 NSL	<1 <1	NA	<1 <1	<1 <1	<1
is-1,2-dichloroethene	1	60	<1	NA	<1	<1	<1
Bromochloromethane	1	250	<1	NA	<1	<1	<1
Chloroform	1	250	<1	NA	<1	4	<1
,2-dichloropropane	1	NSL	<1	NA	<1	<1	<1
,2-dichloroethane	1	3	<1	NA	<1	<1	<1
,1,1-trichloroethane	1	NSL	<1	NA	<1	<1	<1
.,1-dichloropropene	1	NSL NSL	<1 <1	NA	<1 <1	<1 <1	<1
Cyclohexane Carbon tetrachloride	1	NSL 3	<1 <1	NA	<1 <1	<1 <1	<1
Benzene	1	1	<1	NA	<1	<1	<1
Dibromomethane	1	NSL	<1	NA	<1	<1	<1
,2-dichloropropane	2	NSL	<1	NA	<1	<1	<1
richloroethene	1	NSL	<1	NA	<1	<1	<1
romodichloromethane	2	NSL	<1	NA	<1	<1	<1
rans-1,3-dichloropropene	1	100	<1	NA	<1	<1	<1
is-1,3-dichloropropene	1	100	<1	NA	<1	<1	<1
,1,2-trichloroethane oluene	1	NSL 800	<1 <1	NA	<1 <1	<1 <1	<1
.,3-dichloropropane	1	NSL	<1	NA	<1	<1	<1
Dibromochloromethane	1	NSL	<1	NA	<1	<1	<1
,,2-dibromoethane	1	NSL	<1	NA	<1	<1	<1
etrachloroethene	1	50	<1	NA	<1	<1	<1
.,1,1,2-tetrachloroethane	1	NSL	<1	NA	<1	<1	<1
Chlorobenzene	1	300	<1	NA	<1	<1	<1
thylbenzene	1	300 NSL	<1 <1	NA	<1 <1	<1 <1	<1
Bromoform n+p-xylene	2	NSL	<2	NA	<2	<2	<1
ityrene	1	30	<1	NA	<1	<1	<1
,1,2,2-tetrachloroethane	1	NSL	<1	NA	<1	<1	<1
p-xylene	1	NSL	<1	NA	<1	<1	<1
.,2,3-trichloropropane	1	NSL	<1	NA	<1	<1	<1
sopropylbenzene	1	NSL	<1	NA	<1	<1	<1
romobenzene	1	NSL	<1	NA	<1	<1	<1
-propyl benzene -chlorotoluene	1	NSL NSL	<1 <1	NA	<1 <1	<1 <1	<1 <1
-chlorotoluene	1	NSL	<1	NA	<1 <1	<1 <1	<1
,3,5-trimethyl benzene	1	NSL	<1	NA	<1	<1	<1
ert-butyl benzene	1	NSL	<1	NA	<1	<1	<1
,2,4-trimethyl benzene	1	NSL	<1	NA	<1	<1	<1
,3-dichlorobenzene	1	20	<1	NA	<1	<1	<1
ec-butyl benzene	1	NSL	<1	NA	<1	<1	<1
,4-dichlorobenzene	1	40 NSL	<1 <1	NA	<1 <1	<1 <1	<1
-isopropyl toluene ,2-dichlorobenzene	1	NSL 1500	<1 <1	NA	<1 <1	<1 <1	<1
-butyl benzene	1	NSL	<1	NA	<1	<1	<1
,2-dibromo-3-chloropropane	1	NSL	<1	NA	<1	<1	<1
,2,4-trichlorobenzene	1	30	<1	NA	<1	<1	<1
.,2,3-trichlorobenzene	1		<1	NA	<1	<1	<1
lexachlorobutadiene	1	0.7	<1	NA	<1	<1	<1
Polycyclic Aromatic Hydrocarbons (PAHs)	0.0	NC	-0.4	10.1	-0.1	-0.4	
laphthalene Acenaphthylene	0.2	NSL NSL	<0.1	<0.1	<0.1	<0.1 0.1	<0.1
cenaphthene	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1
luorene	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1
henanthrene	0.1	NSL	<0.1	<0.1	<0.1	0.9	<0.1
nthracene	0.1	NSL	<0.1	<0.1	<0.1	0.2	<0.1
luoranthene	0.1	NSL	<0.1	<0.1	<0.1	1.2	<0.1
yrene	0.1	NSL	<0.1	<0.1	<0.1	1.2	<0.1
enzo(a)anthracene	0.1	NSL	<0.1	<0.1	<0.1	0.5	<0.1
hrysene enzo(b.i+k)fluoranthene	0.1	NSL NSL	<0.1	<0.1	<0.1	0.6	<0.1
							<0.2
	0.1		<0.1	<0.1	<0.1	0.2	<0.1
	0.1	NSL	<0.1	<0.1	<0.1	<0.1	<0.1
	0.1	NSL	<0.1	<0.1	<0.1	0.3	<0.1
Benzo(b,j+k)fluoranthene Benzo(a)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene Concentration above the SAC Concentration above the PQL GIL >PQL	0.1		<0.1	<0.1	<0.1	<0.1	

Copyright JK Environments

TABLE G4

GROUNDWATER LABORATORY RESULTS COMPARED TO SITE SPECIFIC HSLs - RISK ASSESSMENT

	PQL	NHMRC	WHO 2008	USEPA RSL			SAMPLES		
	Envirolab	ADWG 2011		Tapwater	BH203	BH203 - LAB DUP	BH207	BH208	GWDUP-20
	Services			2017		DOP			
Total Recoverable Hydrocarbons (TRH)									
C_6 - C_9 Aliphatics (assessed using F1)	10	-	100	-	<10	NA	<10	<10	<10
C ₉ -C ₁₄ Aliphatics (assessed using F2)	50	-	100	-	<50	[NT]	<50	62	<50
Monocyclic Aromatic Hydrocarbons (BTEX Co	ompounds)								
Benzene	1	1	-	-	<1	NA	<1	<1	<1
Foluene	1	800	-	-	<1	NA	<1	<1	<1
Ethylbenzene	1	300	-	-	<1	NA	<1	<1	<1
Fotal xylenes	2	600	-	-	<2	NA	<2	<2	<2
Polycyclic Aromatic Hydrocarbons (PAHs)									
Naphthalene	1	-	-	6.1	<1	NA	<1	<1	<1
/olatile Organic Compounds (VOCs), includin	g chlorinated V	OCs							
Dichlorodifluoromethane	10	-	-	-	<10	NA	<10	<10	<10
Chloromethane	10	-	-	-	<10	NA	<10	<10	<10
/inyl Chloride	10	0.3	-	-	<10	NA	<10	<10	<10
Bromomethane	10	-	-	-	<10	NA	<10	<10	<10
Chloroethane	10	-	-	-	<10	NA	<10	<10	<10
Frichlorofluoromethane	10	-	-	-	<10	NA	<10	<10	<10
I,1-Dichloroethene	1	30	-	-	<1	NA	<1	<1	<1
Frans-1,2-dichloroethene	1	60	-	-	<1	NA	<1	<1	<1
L,1-dichloroethane	1	-	-	-	<1	NA	<1	<1	<1
Cis-1,2-dichloroethene	1	60	-	-	<1	NA	<1	<1	<1
Bromochloromethane	1	250	-	-	<1	NA	<1	<1	<1
Chloroform	1	250	-	-	<1	NA	<1	4	<1
2,2-dichloropropane	1	-	-	-	<1	NA	<1	<1	<1
L,2-dichloroethane	1	3	-	-	<1	NA	<1	<1	<1
L,1,1-trichloroethane	1	-	-	-	<1	NA	<1	<1	<1
I,1-dichloropropene	1	-	-	-	<1	NA	<1	<1	<1
Cyclohexane	1	-	-	-	<1	NA	<1	<1	<1
Carbon tetrachloride	1	3	-	-	<1	NA	<1	<1	<1
Benzene	1	1	-	-	<1	NA	<1	<1	<1
Dibromomethane	1	-	-	-	<1	NA	<1	<1	<1
I,2-dichloropropane	1	-	-	-	<1	NA	<1	<1	<1
Frichloroethene	1	-	-	-	<1	NA	<1	<1	<1
Bromodichloromethane	1	-	-	-	<1	NA	<1	<1	<1
rans-1,3-dichloropropene	1	100	-	-	<1	NA	<1	<1	<1
cis-1,3-dichloropropene	1	100	-	-	<1	NA	<1	<1	<1
L,1,2-trichloroethane		-	-	-	<1	NA	<1	<1	<1
Foluene	1				<1			<1	<1
	1	800	-	-		NA	<1		
L,3-dichloropropane	1	-	-	-	<1	NA	<1	<1	<1
Dibromochloromethane	1	-	-	-	<1	NA	<1	<1	<1
L,2-dibromoethane	1	-	-	-	<1	NA	<1	<1	<1
Fetrachloroethene	1	50	-	-	<1	NA	<1	<1	<1
L,1,1,2-tetrachloroethane	1	-	-	-	<1	NA	<1	<1	<1
Chlorobenzene	1	300	-	-	<1	NA	<1	<1	<1
thylbenzene	1	300	-	-	<1	NA	<1	<1	<1
Bromoform	1	-	-	-	<1	NA	<1	<1	<1
n+p-xylene	2	-	-	-	<2	NA	<2	<2	<2
tyrene	1	30	-	-	<1	NA	<1	<1	<1
.,1,2,2-tetrachloroethane	1	-	-	-	<1	NA	<1	<1	<1
p-xylene	1	-	-	-	<1	NA	<1	<1	<1
.,2,3-trichloropropane	1	-	-	-	<1	NA	<1	<1	<1
sopropylbenzene	1	-	-	-	<1	NA	<1	<1	<1
Bromobenzene	1	-	-	-	<1	NA	<1	<1	<1
n-propyl benzene	1	-	-	-	<1	NA	<1	<1	<1
2-chlorotoluene	1	-	-	-	<1	NA	<1	<1	<1
-chlorotoluene	1	-	-	-	<1	NA	<1	<1	<1
.,3,5-trimethyl benzene	1	-	-	-	<1	NA	<1	<1	<1

1,3,5-trimethyl benzene	1	-	-	-	<1	NA	<1	<1	<1
Tert-butyl benzene	1	-	-	-	<1	NA	<1	<1	<1
1,2,4-trimethyl benzene	1	-	-	-	<1	NA	<1	<1	<1
1,3-dichlorobenzene	1	20	-	-	<1	NA	<1	<1	<1
Sec-butyl benzene	1	-	-	-	<1	NA	<1	<1	<1
1,4-dichlorobenzene	1	40	-	-	<1	NA	<1	<1	<1
4-isopropyl toluene	1	-	-	-	<1	NA	<1	<1	<1
1,2-dichlorobenzene	1	1500	-	-	<1	NA	<1	<1	<1
n-butyl benzene	1	-	-	-	<1	NA	<1	<1	<1
1,2-dibromo-3-chloropropane	1	-	-	-	<1	NA	<1	<1	<1
1,2,4-trichlorobenzene	1	30	-	-	<1	NA	<1	<1	<1
1,2,3-trichlorobenzene	1	50	-	-	<1	NA	<1	<1	<1
Hexachlorobutadiene	1	7	-	-	<1	NA	<1	<1	<1
Concentration above the SAC Concentration above the PQL GIL >PQL	VALUE Bold Red	l							

TABLE Q2 GROUNDWATER QA/QC SU	JMMARY																																																					
		Dichlorodifluoromethane Chloromethane	Vinyl Chloride	Bromomethane	Chloroethane	Trichlorofluoromethane	1,1-Dichloroethene	Trans-1,2-dichloroethene	1,1-dichloroethane	Cis-1,2-dichloroethene	Bromochloromethane	Chloroform	2,2-dichloropropane	1,2-dichloroethane	1, 1, 1-trichloroethane	1, 1-dichloropropene	Cyclohexane	Carbon tetrachloride	Benzene	Dibromomethane	1,2-dichloropropane	Trichloroethene	Bromodichloromethane	trans-1,3-dichloropropene	cis-1,3-dichloropropene	1,1,2-trichloroethane	Toluene 1.3-dichloropropane	Dibromochloromethane	1,2-dibromoethane	Tetrachloroethene	1,1,1,2-tetrachloroethane	Chlorobenzene	Ethylbenzene	Bromoform m+n-xvlane	Styrene	1,1,2,2-tetrachloroethane	o-xylene	1,2,3-trichloropropane	Isopropylbenzene	Bromobenzene n-nrowl henzene	2-chlorotoluene	4-chlorotoluene	1,3,5-trimethyl benzene	Tert-butyl benzene	1,2,4-trimethyl benzene	1,3-dichlorobenzene	Sec-butyl benzene	1,4-dichlorobenzene	4-isopropyl toluene 1 2-dichlorobenzene	n-butyl benzene	1,2-dibromo-3-chloropropane	1,2,4-trichlorobenzene	Hexachlorobutadiene	1,2,3-trichlorobenzene
	PQL Envirolab SYD	10 10	0 10	10	10	10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1 2	2 1	1	1	1	1	1 1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1
	PQL Envirolab VIC	10 10) 10	10	10	10	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1 2	2 1	1	1	1	1	1 1	1 1	1	1	1	1	1	1	1	1 1	1	1	1	1	1
																							-																															
Intra	MW207	<10 <1	0 <10	<10	<10	<10	<1	<1	<1	<1	<1	<1	<1	<1 <	:1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1 .	<1 <	2 <1	<1	<1	<1	<1 .	<1 <	1 <1	<1	<1	<1	<1	<1	<1 ·	<1 <	<1 <	1 <1	<1	<1	<1	<1
laboratory	GWDUP-201	<10 <1	0 <10	<10	<10	<10	<1	<1	<1	<1	<1	<1	<1	<1 <	:1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1 <1	<1	<1	<1	<1	<1	<1 •	<1 <	2 <1	<1	<1	<1	<1 •	<1 <	1 <1	<1	<1	<1	<1	<1	<1 ·	<1 <	<1 </td <td>1 <1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td>	1 <1	<1	<1	<1	<1
duplicate		nc ne	: nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc r	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc no	nc	nc	nc	nc	nc	nc i	nc n	c nc	nc	nc	nc	nc i	nc n	ic no	nc	nc	nc	nc	nc	nc r	nc n	nc nr	nc nc	nc nc	nc	nc	nc
	MEAN RPD %	nc ne	c nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc r	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc	nc no	nc	nc	nc	nc	nc	nc i	nc n	c nc	nc	nc	nc	nc i	nc n	c no	nc	nc	nc	nc	nc	nc n	nc n	nc nc	.c nc	. nc		nc	

	PQL Envirolab SYD PQL Envirolab VIC	01 01 01	05 05 TRH >C10-C16	001 001 7RH >C16-C34	001 001	Benzene 1 1.0	euene 1 1.0	1 1.0	euely-xylene 2.0	euero X,vero 1	0.2	1.0 Acenaphthylene	Acenaph-thene	eu	Dhenanthrene	Anthracene	Eluoranthene	euark 0.1	0. 1 1. Benzo(a)anthracene	Chrysene	2.0 2.0 2.0 2.0 2.0 2.0 2.0	0.1 0.1	1.0 Indeno(1,2,3-c,d)pyrene	0 1 Dibenzo(a,h)anthra-cene	0. 1. Benzo(g,h,i)perylene	L Arsenic	Cadminm 1.0	T Chromium VI	Lopper	Lead	Vercury 0.05	
	FQL Envirolab VIC	10	50	100	100	1.0	1.0	1.0	2.0	1.0	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	1	0.1	1	1	1	0.05	1
Intra laboratory duplicate	MW207 GWDUP-201 MEAN RPD %	<10 <10 nc nc	<50 nc	<100 <100 nc nc	<100 <100 nc nc	<1 <1 nc nc	<1 <1 nc nc	<1 <1 nc nc	<2 <2 nc nc	<1 <1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.2 <0.2 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	<0.1 <0.1 nc nc	5 5 0%	<0.1 <0.1 nc nc	2 2 2 0%	<1 <1 nc nc	<1 <1 nc nc	<0.05 <0.05 nc nc	3 3 3 0% 4								
Field Blank	TB-201 13/02/2025	<10	<50	<100	<100	<1	<1	<1	<2	<1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<1	<0.1	<1	<1	<1	<0.05	<1 •
Trip Spike	TS-201 13/02/2025	-	-	-	-	111%	111%	106%	106%	107%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Result outside of QA/0	QC acce	eptance	criteria		Value																										

ABBREVIATIONS AND EXPLANATIONS

Abbreviations used in the Tables:

CT:	Contaminant Threshold
FTS:	Fluorotelomer sulfonic acid
NA:	Not Analysed
NC:	Not Calculated
NEMP	National Environmental Management Plan
NSL:	No Set Limit
PFAS	Per- and polyfluoroalkyl substances
PFHxS	Perfluorohexanesulfonic acid
PFOA	Perfluorooctanoic acid
PFOS	Perfluorooctanesulfonic acid
PQL:	Practical Quantitation Limit
RS:	Rinsate Sample
SAC:	Site Assessment Criteria
SCC:	Specific Contaminant Concentration
TB:	Trip Blank
TCLP:	Toxicity Characteristics Leaching Procedure
TS:	Trip Spike
UCL:	Upper Level Confidence Limit on Mean Value

Table Specific Explanations:

Groundwater Ecology Tables:

- 95% refers to a concentration that has been derived to protect 95% of aquatic species

TABLE P1

SUMMARY OF PFAS CONCENTRATIONS IN GROUNDWATER - HUMAN HEALTH All results in μ g/L unless stated otherwise.

	PQL	NEMP 2020	NEMP 2020		SAN	1PLES	
	Envirolab			MW203	MW207	MW208	GWDUP-201
	Services	Recreational	Drinking				MW207
PFAS Compound		-					
Perfluorobutanesulfonic acid	0.1	NSL	NSL	0.002	0.001	0.002	0.001
Perfluoropentanesulfonic acid	0.1	NSL	NSL	<0.001	<0.001	0.001	<0.001
Perfluorohexanesulfonic acid - PFHxS	0.1	NSL	NSL	<0.0002	<0.0002	0.0037	0.001
Perfluoroheptanesulfonic acid	0.1	NSL	NSL	<0.001	<0.001	<0.001	<0.001
Perfluorooctanesulfonic acid PFOS	0.1	NSL	NSL	0.0029	<0.0002	0.0044	< 0.0002
Perfluorodecanesulfonic acid	0.2	NSL	NSL	<0.002	<0.002	<0.002	< 0.002
Perfluorobutanoic acid	0.2	NSL	NSL	<0.02	<0.02	<0.02	<0.02
Perfluoropentanoic acid	0.2	NSL	NSL	<0.01	<0.01	0.005	<0.01
Perfluorohexanoic acid	0.1	NSL	NSL	0.003	0.002	0.0096	0.004
Perfluoroheptanoic acid	0.1	NSL	NSL	0.002	0.002	0.0049	0.001
Perfluorooctanoic acid PFOA	0.1	10	0.56	0.0022	0.002	0.0048	0.002
Perfluorononanoic acid	0.1	NSL	NSL	<0.001	<0.001	<0.001	< 0.001
Perfluorodecanoic acid	0.5	NSL	NSL	<0.002	<0.002	<0.002	<0.002
Perfluoroundecanoic acid	0.5	NSL	NSL	<0.002	<0.002	<0.002	<0.002
Perfluorododecanoic acid	0.5	NSL	NSL	<0.005	<0.005	<0.005	<0.005
Perfluorotridecanoic acid	0.5	NSL	NSL	<0.01	<0.01	<0.01	< 0.01
Perfluorotetradecanoic acid	5	NSL	NSL	<0.05	<0.05	<0.05	<0.05
4:2 FTS	0.1	NSL	NSL	<0.001	<0.001	<0.002	<0.002
6:2 FTS	0.1	NSL	NSL	0.003	0.001	<0.0004	0.002
8:2 FTS	0.1	NSL	NSL	<0.0004	<0.0004	<0.0004	< 0.0004
10:2 FTS	0.1	NSL	NSL	<0.002	<0.002	<0.002	< 0.002
Perfluorooctane sulfonamide	1	NSL	NSL	<0.01	<0.01	<0.02	<0.02
N-Methyl perfluorooctane sulfonamide	1	NSL	NSL	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	1	NSL	NSL	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	1	NSL	NSL	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	5	NSL	NSL	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf-amid oacetic acid	0.2	NSL	NSL	<0.002	<0.002	<0.002	<0.002
EtPerfluorooctanesulf-amid oacetic acid	0.2	NSL	NSL	<0.002	<0.002	<0.002	<0.002
Total Positive PFHxS & PFOS	0.1	2	0.07	0.0029	<0.0002	0.0081	0.001
Total Positive PFOS & PFOA	0.1	NSL	NSL	0.0051	0.002	0.0092	0.002
Total Positive PFAS	0.1	NSL	NSL	0.014	0.0081	0.036	0.01

PFAS result above the SAC **Bold**

TABLE P2

SUMMARY OF PFAS CONCENTRATIONS IN GROUNDWATER - ECOLOGY All results in μ g/L unless stated otherwise.

	PQL	NEMP 2018		SAN	1PLES	
	Envirolab	95%	MW203	MW207	MW208	GWDUP-201
	Services	Freshwater				MW207
PFAS Compound						
Perfluorobutanesulfonic acid	0.1	NSL	0.002	0.001	0.002	0.001
Perfluoropentanesulfonic acid	0.1	NSL	<0.001	<0.001	0.001	<0.001
Perfluorohexanesulfonic acid - PFHxS	0.1	NSL	<0.0002	<0.0002	0.0037	0.001
Perfluoroheptanesulfonic acid	0.1	NSL	<0.001	<0.001	<0.001	<0.001
Perfluorooctanesulfonic acid PFOS	0.1	0.13	0.0029	<0.0002	0.0044	<0.0002
Perfluorodecanesulfonic acid	0.2	NSL	<0.002	<0.002	<0.002	<0.002
Perfluorobutanoic acid	0.2	NSL	<0.02	<0.02	<0.02	<0.02
Perfluoropentanoic acid	0.2	NSL	<0.01	<0.01	0.005	<0.01
Perfluorohexanoic acid	0.1	NSL	0.003	0.002	0.0096	0.004
Perfluoroheptanoic acid	0.1	NSL	0.002	0.002	0.0049	0.001
Perfluorooctanoic acid PFOA	0.1	220	0.0022	0.002	0.0048	0.002
Perfluorononanoic acid	0.1	NSL	<0.001	<0.001	<0.001	<0.001
Perfluorodecanoic acid	0.5	NSL	<0.002	<0.002	<0.002	<0.002
Perfluoroundecanoic acid	0.5	NSL	<0.002	<0.002	<0.002	<0.002
Perfluorododecanoic acid	0.5	NSL	<0.005	<0.005	<0.005	<0.005
Perfluorotridecanoic acid	0.5	NSL	<0.01	<0.01	<0.01	<0.01
Perfluorotetradecanoic acid	5	NSL	<0.05	<0.05	<0.05	<0.05
4:2 FTS	0.1	NSL	<0.001	<0.001	<0.002	<0.002
6:2 FTS	0.1	NSL	0.003	0.001	<0.0004	0.002
8:2 FTS	0.1	NSL	<0.0004	<0.0004	<0.0004	<0.0004
10:2 FTS	0.1	NSL	<0.002	<0.002	<0.002	<0.002
Perfluorooctane sulfonamide	1	NSL	<0.01	<0.01	<0.02	<0.02
N-Methyl perfluorooctane sulfonamide	1	NSL	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	1	NSL	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	1	NSL	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	5	NSL	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf-amid oacetic acid	0.2	NSL	<0.002	<0.002	<0.002	<0.002
EtPerfluorooctanesulf-amid oacetic acid	0.2	NSL	<0.002	<0.002	<0.002	<0.002
Total Positive PFHxS & PFOS	0.1	NSL	0.0029	<0.0002	0.0081	0.001
Total Positive PFOS & PFOA	0.1	NSL	0.0051	0.002	0.0092	0.002
Total Positive PFAS	0.1	NSL	0.014	0.0081	0.036	0.01

Positive PFAS result PFAS result above the SAC

Detailed Site Investigation (DSI) 24B Gladstone Street, Kogarah, NSW E32976BT2

TABLE Q3 SUMMARY OF PFAS FIELD QA/QC IN GROUNDWATER

Units are µg/L unless stated otherwise.

PQL Envirola	h	Perfluorobutanesulfonic acid	1.0 Perfluoropentanesulfonic acid	0.1	1.0 Perfluoroheptanesulfonic acid	1.0 Perfluorooctanesulfonic acid PFOS	0 Perfluorodecanesulfonic acid	 Perfluorobutanoic acid 	Perfluoropentanoic acid	.10 Derfluorohexanoic acid	Perfluoroheptanoic acid	1.0 Perfluorooctanoic acid PFOA	1.0 1.0	0 Perfluorodecanoic acid	0. G. Perfluoroundecanoic acid	0. 0.	0 Perfluorotridecanoic acid	 Perfluorotetradecanoic acid 	4.2 FTS	0.1	8.2 HIS 8.7 HIS	10.5 FTS	 Perfluorooctane sulfonamide 	 N-Methyl perfluorooctane sulfonamide 	 N-Ethyl perfluor ooctanesulfon amide 	 N-Me perfluorooctanesulfonamid oethan 	۸ N-Et perfluorooctanesulfonamid oethano	0. MePerfluorooctanesulf-amid oacetic acid	0. Et Perfluorooctanesulf-amid oacetic acid	10 Total Positive PFHxS & PFOS	10 Total Positive PFOS & PFOA	0.1
PQL Envirola		0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.5	0.5	0.5	0.5	5	0.1	0.1	0.1	0.1	1	1	1	1	5	0.2	0.2	0.1	0.1	0.1
																																-
	MW207	0.001	< 0.001	< 0.0002	< 0.001	< 0.0002	< 0.002	<0.02	< 0.01	0.002	0.002	0.002	< 0.001	<0.002	< 0.002	<0.005	< 0.01	<0.05	<0.001	0.001	< 0.0004	< 0.002	<0.01	<0.05	<0.1	<0.05	<0.5	< 0.002	< 0.002	< 0.0002		0.0081
	GWDUP-201	0.001	< 0.001	0.001	< 0.001	< 0.0002	< 0.002	<0.02	< 0.01	0.004	0.001	0.002	< 0.001	< 0.002	< 0.002	<0.005	< 0.01	< 0.05	< 0.002	0.002	< 0.0004	<0.002	<0.02	<0.05	<0.1	< 0.05	<0.5	< 0.002	< 0.002	0.001	0.002	
	MEAN	0.001	nc	0.0255	nc	nc	nc	nc	nc	0.003	0.0015	0.002	nc	nc	nc	nc	nc	nc	nc	0.0015	nc	nc	nc	nc	nc	nc	nc	nc	nc	0.0255	0.002	0.00905
	RPD %	0%	nc	192%	nc	nc	nc	nc	nc	67%	67%	0%	nc	nc	nc	nc	nc	nc	nc	67%	nc	nc	nc	nc	nc	nc	nc	nc	nc	192%	0%	21%
Field	TB-201	< 0.0004	< 0.001	< 0.0002	< 0.001	< 0.0002	< 0.002	< 0.002	<0.002	< 0.0004	< 0.0004	<0.0002	< 0.001	< 0.002	<0.002	<0.005	<0.01	<0.05	<0.001	<0.0004	< 0.0004	<0.002	<0.01	<0.05	<0.1	<0.05	<0.5	< 0.002	< 0.002	< 0.0002	<0.0002	2 < 0.0002
Blank	13/02/2025																															

Appendix C: Borehole Logs

	Client: Project:	PROP	OSE	DU	PGRAI	DES					
	Location:	KOGA	RAH	I PU	BLIC S	СНОС	DL, 24B GLADSTONE STREE	ET, KOG	GARAH	I, NSW	
	Job No.:					Me AU	thod: HAND AUGER / SPIRA GER				~20.3 m
	Date: 31/1			25				Da	atum:	AHD	
	Plant Typ	e: JK305		1		Lo	gged/Checked By: J.F./A.B.	1	1		
Groundwater	SAMPLES BB DB D	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
			- 20 — - -	- - - - - -			FILL: Silty sand, fine to coarse grained, brown. FILL: Sandy gravel, fine to medium grained, grey, igneous, fine to coarse grained sand, trace of cemented sand nodules. FILL: Sandy silty clay, low plasticity, dark brown, fine to coarse grained sand,	M w>PL			SCREEN: 11.60kg, 0-0.05m, NO FCF SCREEN: 12.7kg(<10L), 0.1-0.25m, NO FCF
NON	ERING		-	1-		-	trace of fine to medium grained ironstone gravel.	MW	M - H		HAND AUGER TO 1.05m
	OF AUG		19 - - -	-			FILL: Sandy silty clay, low plasticity, dark brown, fine to medium grained sand, trace of fine to medium grained ironstone gravel, and tile fragments. SANDSTONE: fine to medium grained, light grey and orange brown. REFER TO CORED BOREHOLE LOG				SANDSTONE MODERATE TO HIGH 'TC' BIT RESISTANCE
			- - 18 -	2-							
0			- - 17 -	3	-						-
D			- - 16 -	4-							- - - - - - - - - -
			- - 15 -	5	-						- - - - - - - - - - -
0			- - 14 — - -	6							

		ier	nt: ect:			DEPARTMENT OF EDUCATI	ON					
		-	tion			RAH PUBLIC SCHOOL, 24B	GLAD	STO	NE STRE	ET, KOGA	ARAH, NSW	
	Jo	b l	No.:	32	976LT1	Core Size:	NML	С		R.L	 Surface: ~20.3 m	
	Da	ate	: 31/	1/2	5 TO 12	2/2/25 Inclination	: VEF	TICA	L	Dat	tum: AHD	
	Pl	an	t Typ	e:	JK305	Bearing: N	J/A			Lo	gged/Checked By: J.F./A.B.	
						CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
			-		-	START CORING AT 1.24m						
			19	2- 3- 4-		SANDSTONE: fine to medium grained, orange brown, with occasional light grey bands, bedded at 0-5°.	MW	M-H	I ₱1.1 I ₽0.80 I I I ₽0.80 I I I I I I I P1.1 I I I I I I I P1.1 I I I P1.1 I P1.1		— (1.32m) J, 70°, P, R, Cn — (1.64m) Be, 0°, P, R, Fe Sn, 35 mm.t	ndstone
50%	RETURN		- - 15 - -	5-		SANDSTONE: fine to medium grained, light grey, bedded at 0-5°. Extremely Weathered sandstone: sandy silty CLAY, low plasticity, light grey, fine to medium grained sand. SANDSTONE: fine to medium grained, light grey, with grey and dark grey laminae, bedded at 0-10°.	FR XW FR	L Hd M			— (4.71m) Be, 5°, P, S, Fe Sn — (4.83m) CS, 0°, 1 mm.t] (5.10-5.33m) HP: >600, >600, >600 kPa	Hawkesbury Sandstone
	-		14 - - 13	7-		SANDSONTE: fine grained, grey, with		Н	1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1		— (6.39m) XWS, 0°, 120 mm.t — (6.70m) XWS, 0°, 20 mm.t — (7.37m) Be, 5°, P, S, Clay Vn	
)P,	YRI	GHT			occasional dark grey siltstone bands, bedded at 0-5°.	FRACT		0T MARKED		(7.69m) XWS, 0°, 20 mm.t 	FAKS

	Pr	-	nt: ect: tion	I	PROP	DEPARTMENT OF EDUCATI DSED UPGRADES RAH PUBLIC SCHOOL, 24B		STO)NI	. ст	RF	FT M	(0(SARAH NSW	
										_ 01		L I , I			
					976LT1									R.L. Surface: ~20.3 m	
					5 TO 12			IIC/	٩L					atum: AHD	
_			гій	be: .	JK305	Bearing: N	1/A		D	DINT L	045			ogged/Checked By: J.F./A.B. DEFECT DETAILS	
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	S		GTH EX))	SPAC (mr	n)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
	RETURN		- 12 - - - 11 - - - - - - - - - - - - - - -	9 9 10		SANDSONTE: fine grained, grey, with occasional dark grey siltstone bands, bedded at 0-5°. SANDSTONE: fine to medium grained, light grey, with grey and dark grey laminae, bedded at 0-10°. SANDSTONE: fine to medium grained, light brown, bedded at 0-10°.	_ FR	Н			2.1 1.5 .1 1.6 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1			(9.42m) XWS, 0°, 30 mm.t (8.02m) XWS, 0°, 10 mm.t (8.02m) XWS, 0°, 10 mm.t (8.02m) XWS, 0°, 10 mm.t (9.42m) XWS, 0°, 20 mm.t (9.42m) XWS, 0°, 20 mm.t (9.47m) Be, 0°, P, S, Clay Ct	Hawkesbury Sandstone
				11		END OF BOREHOLE AT 10.38 m									
	יפר		GHT	-			FRACTI							 DERED TO BE DRILLING AND HANDLING BR	

	Pro	oje	ct:	PROP	OSE	D U	PGRAI	DES					,
_						1 PU	BLIC S		DL, 24B GLADSTONE STREE				~18.6 m
					I			IVIE	IIIOU. SPIRAL AUGER		atum:		10.0 11
	Pla	ant	Тур	e: JK330				Lo	gged/Checked By: J.F./A.B.				
Groundwater	Record	AMAS	PLES DS	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON	Project: F Location: F Job No.: 329 Date: 11/2/25 Plant Type: J SAMPLES B SAMPLES SAMP			-			-	ASPHALTIC CONCRETE: 40mm.t FILL: Silty sandy gravel, fine to medium grained, igneous, dark grey, fine to coarse grained sand.	М				
				N = 2 3,2,0	18 — - -	1-		SP	SAND: fine to coarse grained, orange brown and light brown, trace of fine to medium grained sandstone gravel.	М	VL		_ RESIDUAL
018-03-20				N=SPT	- - 17-				as above, but light grey mottled orange brown.				-
10-11-01 PJI: JK 9:01-02				∖ 5/ 150mm REFUSAL	-	2-		-	SANDSTONE: fine to medium grained, light grey and orange brown.	MW	VL M	-	HAWKESBURY SANDSTONE VERY LOW 'TC' BIT
LID: JK 9.02.4 2019-					- 16-								MODERATE TO HIGH RESISTANCE
JK AUGERFICLE - MASIEK 329/RL11 KUGARMH - J/KE.GFJ < 0403/20/20 14:46 10/01/01/01 Lange Lab and InStitu 1001 - DGJ Lb						3- 3- 4- 5- 5- 6-			REFER TO CORED BOREHOLE LOG				
		/RIG			12-		-						-

F	Pro	ent: ject: ation		PROPO	DEPARTMENT OF EDUCATIO DSED UPGRADES RAH PUBLIC SCHOOL, 24B (STO			ARAH NSW	
				976LT1				NE STRE		L. Surface: ~18.6 m	
		e: 11/			Inclination:		-			atum: AHD	
				JK330	Bearing: N					ogged/Checked By: J.F./A.B.	
_					CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	
Water	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50)	SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		- - 16		- - - - -	START CORING AT 2.72m						
			3-		SANDSTONE: fine to medium grained, light grey, bedded at 0-5°.	FR XW	M Hd			: -1	
		- - - - - -	4-		Extremely Weathered sandstone: sandy sity CLAY, low plasticity, light grey, fine to medium grained sand, with very low strength sandstone bands.		Πα	•0.030		- - - - (2.96-4.29m) HP: >600, >600, >600 kPa -	
		- 14	5-		SANDSTONE: fine to medium grained, light grey, with grey laminae, bedded at 0-10°.	HW	VL - L	+0.070 +0.10		-	
98%	URN	- - 13-				FR	M	0.40 0.40 1 1 1 1 1 1 1 1 1 1 1 1 1		(5.23m) XWS, 0°, 40 mm.t (5.55m) XWS, 0°, 25 mm.t	y Sandstone
6	RET		6-					 + 0.70 			Hawkesbury
		-	7-		as above, but grey and light grey, with dark grey	-	M-H	•1.2			
		- 11	8-		SANDSTONE: fine to medium grained, light grey, with dark grey laminae, bedded at 0-5°.			+1.4 ++1.4 + + + + + + + + + + + + + + + + + + +		(7.79m) CS, 5°, 2 mm.t 	
					SANDSTONE: fine to medium grained, light brown and light grey, with red brown bands, bedded at 0-10°, and occasional siltstone clasts.	MW	H			(8.49m) Be, 0°, P, R, Fe Sn, 30 mm.t 	

1	Pro	-	nt: ect: ntion		PROPO	DEPARTMENT OF EDUCATIO DSED UPGRADES RAH PUBLIC SCHOOL, 24B (STO	N	E ST	RE	ET	. KO	DG	ARAH, NSW	
					976LT1										L. Surface: ~18.6 m	
	Da	te	: 11/	2/25	5	Inclination:	VER		AL					Da	atum: AHD	
	Pla	ant	t Typ	e:	JK330	Bearing: N	/A							Lc	ogged/Checked By: J.F./A.B.	
						CORE DESCRIPTION						-			DEFECT DETAILS	
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength		STREN INDE I _s (50	X))		ACIN (mm)		DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
	RETURN		9 9 - - - - - - - - - - - - - - -	10		SANDSTONE: fine to medium grained, light brown and light grey, with red brown bands, bedded at 0-10°, and occasional siltstone clasts. <i>(continued)</i> SANDSTONE: fine to medium grained, light grey, with dark grey laminae, bedded at 0-15°.	MW FR	H			1.4 					Hawkesbury Sandstone
124 FIDIOLD DG AN WARD DARFTULE ANNO IEN 328/0111 NUMMANT-AREGAP «SURMIGHER» UNIVALIA INVALIAN I UNIVER LADBIR				12		END OF BOREHOLE AT 11.82 m						00	280	0		

	Clier Proje Loca	ect:	PROP	OSE	DU	PGRAI	DES	DUCATION DL, 24B GLADSTONE STREE	T, KOG	ARAF	I. NSW	1
								thod: SPIRAL AUGER				~19.9 m
							-		Da	atum:	AHD	
	Plan	t Typ	e: JK308				Lo	gged/Checked By: J.F./A.B.				
Groundwater	ES ES		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON	Job No.: 329 Date: 15/1/25 Plant Type:			-	-		-	ASPHALTIC CONCRETE: 100mm.t FILL: Silty sand, fine to medium grained, dark grey. FILL: Sandy silty clay, low plasticity, dark	M w>PL			SCREEN: 0.6kg, 0.1-0.4m, NO FCF
	0		N > 3 1,3/ 150mm REFUSAL	-	-			grey, fine to medium grained sand, trace of fine to medium grained sandstone gravel.				 SCREEN: 1.5kg, 0.5-0.8m, NO FCF
				19 -	-1-		-	SANDSTONE: fine to medium grained, light grey.	MW	М		- HAWKESBURY SANDSTONE
								REFER TO CORED BOREHOLE LOG				MODERATE 'TC' BIT RESISTANCE GROUNDWATER MONITORING WELL INSTALLED TO 12.18m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 2.18m TO 12.18m. CASING 0.11m TO 2.18m. 2mm SAND FILTER PACK 0.85m TO 12.18m. BENTONITE SEAL 0.1m TO 3.85m. BACKFILLED WITH SAND AND CUTTINGS TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.
)PYRI			13-	-							-

	Clio Pro		nt: ect:			DEPARTMENT OF EDUCATION DSED UPGRADES	N					
L	_00	са	tion	:	KOGA	RAH PUBLIC SCHOOL, 24B (GLAD	STO	NE STRE	ET, KOG	GARAH, NSW	
					976LT1			-		R	.L. Surface: ~19.9 m	
			: 15/			Inclination:		RTICA	L		atum: AHD	
	Pla	ant	t Typ	be:	JK308	Bearing: N	/A			1	ogged/Checked By: J.F./A.B.	-
Water		Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAE STRENGTH INDEX Is(50)	SPACING (mm)	DEFECT DETAILS DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
			- - - 19 —	-1-	- - - - - - - - - - - - - -	START CORING AT 1.00m	MW	M				
	- CORING					SANDSTONE: fine to medium grained, light grey, with orange brown bands, bedded at 0-15°.	MVV	M - H	+0.90 +0.70			
1.480 A RETURN 001 - DGU LIR: JK 9.02.4 2019-09-01			18 - - - - 17 -	2-		SANDSTONE: fine to medium grained, orange brown and light brown, with grey laminae, bedded at 0-15°.	-		*0.80			
	COMPLETION		- - 16 -	4 -					1 1 1 1 1 1 1 1 1 1 1 1 1 1		(3.41m) XWS, 5°, 30 mm.t 	Hawkesbury Sandstone
			- 15 — - -	5-		SANDSTONE: fine to medium grained, light grey, with grey laminae, bedded at 0-5°. Extremely Weathered sandstone: sandy CLAY, low plasticity, light grey, fine to medium grained sand. SANDSTONE: fine to medium grained, light grey, with grey and dark grey laminae, bedded at 0-10°.	FR XW FR	Hd M - H			(4.61-5.05m) HP: >600, >600, >600 kPa	
			14 - - - - - - - - - - - - - - - - - -	6-					+0.40			

CORED BOREHOLE LOG

	-	nt: ect: ation		PROP	DEPARTMENT OF EDUCATIO DSED UPGRADES RAH PUBLIC SCHOOL, 24B (STO	NE STREE	ET. KOG	SARAH. NSW	
				976LT1						.L. Surface: ~19.9 m	
1	Date	ə: 15/	1/2	5	Inclination:	VEF	TICA	L	D	atum: AHD	
F	Plar	nt Typ	be:	JK308	Bearing: N	/A			L	ogged/Checked By: J.F./A.B.	
					CORE DESCRIPTION			POINT LOAD STRENGTH		DEFECT DETAILS	
Water	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength		SPACING (mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		-		- - - - - -	SANDSTONE: as above // SANDSTONE: fine grained, grey, with Siltstone, dark grey laminae, bedded at 0-5°.	FR	M - H	•1.6 •1.6 		_ — (7.04m) XWS, 0°, 5 mm.t _ _ _ _ _	
		12-	8-		LAMINITE: Sandstone, fine grained, grey, interlaminated with Siltstone, dark \grey, bedded at 0-5°.	-	L-M H	•0.30		_ _ _ — (7.80m) XWS, 0°, 10 mm.t _ _	
		-		-	light grey, with grey laminae, bedded at 0-10°.					– – (8.23m) Be, 0°, P, S, Clay Ct – –	
		- 11-	9-		SANDSTONE: fine to medium grained,	MW		11.2 		– – – (8.79m) Be, 0°, P, S, Clay Ct –	
ער שמעפו באו מוש וו סווע דטאי דעטע ן צוג איז איזי איז		 10 	10-		light brown and orange brown, bedded at 0-20°.			•1.6 •1.6 •2.2 •2.2 •1.8 •1.8	660	- - - - - - - - - - - - - - - - - - -	Hawkesbury Sandstone
		9	11-							- - - - - - - - - - - - -	
		8-	12-		SANDSTONE: fine to medium grained, light grey, with grey laminae, bedded at	FR				− (11.96m) Be, 0°, P, R, Clay Ct 	
וםטרם רען אי אטידע טאירווער - איאי ניי איא איי			13-		\0-15°/ END OF BOREHOLE AT 12.18 m						
		6- 21GHT		-						- - DERED TO BE DRILLING AND HANDLING BR	

COPYRIGHT

URES NOT MARKED ARE CONSIDERED TO BE

Client:	NSW DEF	PART	MENT	OF EI	DUCATION				
Project:	PROPOSE	ED U	PGRAI	DES					
Location:	KOGARA	H PU	BLIC S	снос	DL, 24B GLADSTONE STREE	ET, KOG	iARAH	I, NSW	,
Job No.: 32	2976LT1			Ме	thod: SPIRAL AUGER	R.	L. Sur	face: ~	~18.5 m
Date: 17/1/2	25					Da	atum:	AHD	
Plant Type:	JK308			Lo	gged/Checked By: J.F./A.B.				
Groundwater Record ES U50 DB DS DS	Field Tests RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
COMPLETION COMPLETION OF AUGERING	N = 3 1,1,2	- - - - - - - - - - - - - - - - - - -		-	SPRAYED SEAL: 5mm.t FILL: Silty sandy gravel, fine to medium grained, dark grey, fine to coarse grained sand. FILL: Sandy silty clay, low plasticity, dark grey, fine to medium grained sand. FILL: Silty sand, fine to medium grained, grey, with fine to medium grained ironstone gravel.	M w>PL M			APPEARS POORLY COMPACTED SCREEN: 2.15kg, 0.1-0.5, NO FCF SCREEN: 3.55kg, 0.5-1.0m, NO FCF SCREEN: 4.45kg,
	N > 20 10,20/ 100mm	- - - -		CL	Sandy silty CLAY: low plasticity, orange brown, fine to medium grained sand.	w>PL	(St) Hd	-	TOO FRIABLE FOR HP TESTING
	100mm REFUSAL		· · · · · · · · · · · · · · · · · · ·	-	SANDSTONE: fine to medium grained, light grey and orange brown.	MW	Μ		HAWKESBURY
	15-								
	14-								
COPYRIGHT	12-	- - - - -							-

	Pre	-	ect:		PROPO	DEPARTMENT OF EDUCATION		0.10		
			tion						NE STREET, KOGARAH, NSW	
	-		-	-	976LT1 -	Core Size:			R.L. Surface: ~18.5 m	
			: 17/			Inclination:		CHCA		_ /
	218	ant	t Typ	be:	JK308	Bearing: N	/A	1	Logged/Checked By: J	.F./A.B.
Water		Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	CORE DESCRIPTION Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	POINT LOAD DEFECT DETAILS STRENGTH INDEX Is(50) SPACING (mm) DESCRIPTION Type, orientation, defect sha roughness, defect coatings seams, openness and thick Specific Specific	and <u>t</u>
			- - 17 -			START CORING AT 1.92m				
			-	2-	-	NO CORE 0.33m				
02-00-0102 0.101			- 16 -		- - - - - - - - - - - - - - - - - - -	SANDSTONE: fine to medium grained, light brown and brown, massive.	MW	M		
NOL			-	3-	-	Extremely Weathered sandstone: sandy silty CLAY, low plasticity, light grey, fine to medium grained sand.	XW	Hd	_	a
	히		- 15			SANDSTONE: fine to medium grained, light grey and red brown, bedded at 0-10°.	MW	L	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
			- - 14 —	4 -		SANDSTONE: fine to medium grained, light grey, with grey and dark grey laminae, bedded at 0-10°.	300		0.20	
70%	RETURN		-	5-			FR	M	- <u>8:3</u>	Hawkesbury Sandstone
			- 13-							Hawkesbu
			-	6-						
			12	7-		SANDSTONE: fine grained, grey, bedded at 0-5°.	-	M - H		
			- 11-			αι υ-υ .	SW	-		
			GHT			SANDSTONE: as below	MW	Н	→ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	

	Pr	-	nt: ect: ition		PROPO	DEPARTMENT OF EDUCATIO DSED UPGRADES RAH PUBLIC SCHOOL, 24B (STO	NE	ST	RE	ET, KO	CG	ARAH, NSW	
					976LT1							,		L. Surface: ~18.5 m	
	Da	ate	: 17/	1/25	5	Inclination:	VER		۱L				Da	atum: AHD	
	Pla	an	t Typ	e:	JK308	Bearing: N	/A						Lo	ogged/Checked By: J.F./A.B.	
						CORE DESCRIPTION					_OAD			DEFECT DETAILS	
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength		INDE I _s (50	ΞX	SPACIN (mm)		DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
07-0	-		- - - - - - -	9-		SANDSTONE: fine to medium grained, orange brown, red brown and light grey, grey and dark grey laminae, with fine grained quartz gravel, bedded at 0-20°.	MW	Н			1.5 1.4 2.1				tone
202.4 2013-00-31 PTJ; JN 3-01.0 2010-0-0	RETURN		9_	10-		SANDSTONE: fine to medium grained, light brown, massive.	_				 2.4 3.0			- - - - - - -	Hawkesbury Sandstone
			8	- - - - - - - - - - - - - - - - - - -		SANDSTONE: fine to medium grained, brown, with brown laminae, bedded at 5-20°.	_				•3.1 - - - 2.8 -			- - - (10.94m) Be, 20°, P, S, Clay Vn - -	
LENSLE LOG AN OUNCE DONKTHOLE - MARIEN 22810LI I NOGNAMI - ANELGY - SSUANIIGTERS - UNIVERZAZI HAI 10711,0001 Da			7 - - - - - - - - - - - - - - - - - -	12		END OF BOREHOLE AT 11.29 m									
	יפו		GHT											- - DERED TO BE DRILLING AND HANDLING BR	FAKS

	lient roje					MENT PGRAI		DUCATION				
L	ocat	ion:	KOGA	\RAH	I PU	BLIC S	СНОС	DL, 24B GLADSTONE STREE	ET, KOG	ARAH	I, NSW	
Jo	ob N	lo.: (32976LT	1			Me	thod: SPIRAL AUGER	R.	L. Sur	face: ~	~18.8 m
			/25 TO 1		25				Da	atum:	AHD	
P	lant	Туре	e: JK308	3	1		Lo	gged/Checked By: J.F./A.B.	1			
Groundwater Record	SAMI OSU	PLES BO	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION OF AUGERING				-			-	SPRAYED SEAL: 5mm.t FILL: Silty sandy gravel, fine to medium grained, dark grey, igneous, fine to medium grained sand.	- M			SCREEN: 3.05kg, 0.1-0.5m, NO FCF
				- 18	1-	-		FILL: Silty sand, fine to medium grained, dark grey, trace of igneous gravel. SANDSTONE: fine to medium grained, orange brown. REFER TO CORED BOREHOLE LOG	MW	<u> </u>		HAWKESBURY SANDSTONE MODERATE 'TC' BIT RESISTANCE
				- 17 -	2-	-						- - - - - - - -
				- 16	3-	-						-
				- 15	4							-
				- 14	5							-
					6	-						-
				12-		-						-

COPYRIGHT

F	roj	ent: ject: ation		PROP	DEPARTMENT OF EDUCATI DSED UPGRADES RAH PUBLIC SCHOOL, 24B		STO	NE STRE	ET, KOG	GARAH, NSW	
J	ob	No.:	32	976LT1	Core Size:	NML	0		R	.L. Surface: ~18.8 m	
	ate	e: 16/	1/2	5 TO 17	7/1/25 Inclination	: VER	TICA	L	Da	atum: AHD	
F	lar	nt Typ	e:	JK308	Bearing: N	N/A			Lo	ogged/Checked By: J.F./A.B.	
					CORE DESCRIPTION			POINT LOAD STRENGTH		DEFECT DETAILS	_
Water Loce/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	INDEX I _s (50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		-		- - - - -	START CORING AT 0.61m						
		- 18	1-		SANDSTONE: fine to medium grained, orange brown and light brown, with light grey bands, indistinctly bedded at 0-10°.	MW	M			—— (0.75m) J. 25°, P, R, Cn —— (0.85m) Be, 5°, P, R, Clay Vn ——	
		17 - - - 16 -	2- 3-		SANDSTONE: fine to medium grained, light grey, with grey and dark grey laminae, bedded at 0-10°.	FR		+0.70 +0.70			
98%		- - - 15 -			Extremely Weathered sandstone: sandy silty CLAY, low plasticity, light grey, fine to medium grained sand.	, xw	Hd	+0.30 	200		ury Sandstone
		-	4 -	 	SANDSTONE: fine to medium grained, light grey, with grey and dark grey	FR	M				Hawkesbu
		- 14 - -	5-		laminae, indistinctly bedded at 0-20°.			 •0.40 0.30 1 1 1 1 1 1 •0.60 1 1		(4.88m) Be, 5°, P, S, Clay Vn 	
		- 13 - - -	6-		SANDSTONE: fine grained, grey, with dark grey laminae, bedded at 0-5°.	_	н	•0.80 		(6.16m) Be, 0°, P, S, Clay Ct	
					SANDSTONE: fine to medium grained, light grey, with grey laminae, bedded at 0-10°.			1.2		(6.66m) XWS, 0°, 20 mm.t	

P	-	nt: ect: ation		PROP	OSED UPG	NT OF EDUCATIO RADES C SCHOOL, 24B (STO	NE STRE	ET, ŀ	(0(GARAH, NSW	
J	ob	No.:	329	976LT1		Core Size:	NML	2			R	R.L. Surface: ~18.8 m	
D	ate	: 16/	1/25	5 TO 17	7/1/25	Inclination:	VER	TICA	L		D	Datum: AHD	
P	lan	t Typ	be:	JK308		Bearing: N	/A				L	.ogged/Checked By: J.F./A.B	
					CORE	DESCRIPTION						DEFECT DETAILS	
Water Loss\Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	texture and fa	in characteristics, colour, bric, features, inclusions nor components	Weathering	Strength	STRENGTH INDEX I _s (50)	(mr	n)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific Genera	Formation
		- - 11 —				ine to medium grained, rey and dark grey d at 0-15°.	FR	H M	0.90				
98% RETLIRN		- - - 10 -	8-		orange brown a	ine to medium grained, nd light brown, with grey ls, bedded at 0-20°.	MW	H				— (8.13m) Be, 0°, P, R, Fe Sn — (8.13m) Be, 0°, P, R, Fe Sn — — — — — — — — — — — — — — — — — — —	Ø
98% RETURN		9	10-			ine to medium grained, ssive, with occasional fine gravel.			I I I I			(9.44m) XWS, 0°, 5 mm.t	Hawkesbury Sandstone
		- - - 7	11 -		light brown, with at 5-20°.	ine to medium grained, brown laminae, bedded	-		•1.7 •1.7 •1.7 •1.7 •1.7 •1.7 •1.7 •1.7				
		6-	· · · · · · · · · · · · · · · · · · ·		orange brown, r	ine to medium grained, nassive. HOLE AT 12.73 m						- - - - - - - -	
			13-				EDACT					IDERED TO BE DRILLING AND HANDLING	PDEAV

	Client							DUCATION				
	Proje Locat		PROP					DL, 24B GLADSTONE STREE	т кос		I NSW	,
			32976LT1					thod: SPIRAL AUGER				~19.0 m
	Date:									atum:		
	Plant	Туре	e: JK308		r	1	Loạ	gged/Checked By: J.F./A.B.	1			
Groundwater	IMAS ES U50	PLES 80	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION	OF AUGERING			-	-			FILL: Silty sand, fine to coarse grained, dark brown, trace of rubber fragments and slag. CONCRETE: 50mm.t FILL: Silty sand, fine to medium grained, dark grey brown.		М		SYNTHETIC GRASS COVER SCREEN: 7.76kg, 0-0.05m, NO FCF NO OBSERVED
				- 18 — -				SANDSTONE: fine to medium grained, orange brown. REFER TO CORED BOREHOLE LOG				REINFORCEMENT HAWKESBURY SANDSTONE MODERATE 'TC' BIT RESISTANCE HIGH RESISTANCE
				- - - - -	2							'TC' BIT REFUSAL
- 				- 16 — -	3							- - - - - - - - -
0				- 15 — - -	4							
				- 14 — -	5							- - - - - - - -
				- 13 - -								
				-	-							-

CORED BOREHOLE LOG

P	lier roje oca	-		PROP	DEPARTMENT OF EDUCATIC OSED UPGRADES RAH PUBLIC SCHOOL, 24B (STO	NE STRE	ET. KOG	ARAH, NSW	
				976LT1						.L. Surface: ~19.0 m	
		: 15/			Inclination:			L		atum: AHD	
P	lan	t Typ	e:	JK308	Bearing: N	/A			Lo	ogged/Checked By: J.F./A.B.	
-					CORE DESCRIPTION			POINT LOAD		DEFECT DETAILS	
Water Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX Is(50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		-		- - - - -	START CORING AT 0.60m					-	Indstone
98%		-		_	SANDSTONE: fine to medium grained, light brown and orange brown, bedded at 0-5°.	MW	M	+0.70		-	ury Sa
		18 — - -	1-		NO CORE 0.94m						Hawkesbury Sandstone
			2- 3-		SANDSTONE: fine to medium grained, orange brown and light brown, with occasional light grey and red brown bands, massive.	MW	M			(2.07m) Be, 0°, P, R, Clay Vn (2.07m) Be, 0°, P, R, Clay Vn (2.92m) Be, 5°, P, R, Clay Vn	
0		-			SANDSTONE: fine to medium grained, light grey, with dark grey laminae, bedded	FR	L	•0.20		-	
20%		- 15 — -	4-		At 0-10°. Extremely Weathered sandstone: sandy silty CLAY, low plasticity, light grey, fine to medium grained sand, with very low strength bands.	XW	Hd	I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I			Hawkesbury Sandstone
		-		_	SANDSTONE: fine to medium grained, light grey, with grey and dark grey	FR	L	0.20			lawkest
		14 - - - 13	5- 6-		laminae, indistinctly bedded at 0-10°.		М	•0.60			
		-	-		LAMINITE: Sandstone, fine grained, grey, interlaminated with Siltstone, dark grey, bedded at 0-5°.		Н	•1.8 •1.8		(6.08m) Be, 0°, P, S, Clay Vn 	
				- <u></u>	SANDSTONE: as below		M - H	0.70	- 660 - - 260 - - 26	(6.79m) Be, 0°, P, S, Clay Ct - 	

COPYRIGHT

FRACTURES NOT MARKED ARE CONSIDERED TO BE DRILLING AND HANDLING BREAKS

	Pr	-	nt: ect: ntion		PROPO	DEPARTMENT OF EDUCATIO DSED UPGRADES RAH PUBLIC SCHOOL, 24B 0		STO		ET, KOG	GARAH, NSW	
	Jo	b	No.:	329	976LT1	Core Size:	NML	C		R.	.L. Surface: ~19.0 m	
	Da	ate	: 15/	1/25	5	Inclination:	VER	TICA	L	Da	atum: AHD	
	PI	an	t Typ	oe:	JK308	Bearing: N/	/A			Lo	ogged/Checked By: J.F./A.B.	
Γ			0		_	CORE DESCRIPTION			POINT LOAD STRENGTH		DEFECT DETAILS	
\/\ater	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	INDEX I _s (50)	(mm)	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
20-01 LTJ; AN 8:01:0 Z010-00-Z0	20% RETURN			8-		SANDSTONE: fine to medium grained, light grey, with grey and dark grey laminae, and occasional siltstone bands, bedded at 0-20°.	FR	M - H	i i i i		(7.73m) Be, 0°, P, S, Clay Ct	Hawkesbury Sandstone
			10 -	9-		END OF BOREHOLE AT 9.13 m			1.0		 	
04/03/2020 14:01 10:01:00:01 Datiget Facilities in the 10:02 12:01 10:01 10:01			- - 9 - - 8	10-								
+ LIBOLD LOY OVED DOVETIOLE - MANIEN 228/0L11 NOGANAN - ANE.OF7 VAUAWIIJT-18-V 0+			- - - - - - - - - - - - - - - - - - -	12- 13-								
		YR	IGHT		_					8 8 8 8 1 1 1 1 1 ARE CONSIE	- - DERED TO BE DRILLING AND HANDLING BR	EAKS

	Clien Proje Loca		PROF	POSE	D U	PGRAI	DES	DUCATION DL, 24B GLADSTONE STREE	T. KOG	ARAF	I. NSW	,
\vdash			32976LT					thod: SPIRAL AUGER				~17.9 m
		16/1					ivic			atum:		17.5 m
			e: JK308	3			Lo	gged/Checked By: J.F./A.B.				
Groundwater	Record ES IFD	IPLES	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
NO V	RING			-	· .			FILL: Silty sand, fine to coarse grained, dark brown, trace of rubber and plastic	М			SYNTHETIC GRASS
DRY ON COMPLETION	OF AUGE			-			-	\fragments. SANDSTONE: fine to medium grained, light grey, red brown and orange brown.	MW	М		SCREEN: 12.35kg, 0-0.1m, NO FCF HAWKESBURY
				17 -	- 1-	-		REFER TO CORED BOREHOLE LOG				SANDSTONE MODERATE 'TC' BIT RESISTANCE 'TC' BIT REFUSAL
				- - 16 - -	2-							GROUNDWATER MONITORING WELL INSTALLED TO 12.7m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 3.0m TO 12.7m. CASING 0.1m TO 3.5m. 2mm SAND FILTER PACK 1.8m TO 12.7m. BENTONITE SEAL 0.5m TO 1.8m. BACKFILLED WITH SAND AND
				- 15	3-	-						CUTTINGS TO THE SURFACE. COMPLETED WITH A CONCRETED GATIC COVER.
0.001				14	-	-						-
					4							
- ואמינים בניסרים ביני אנייני אינייני א					6							

F	Pro	ent: ject: ation		PROP	DEPARTMENT OF EDUCATIO DSED UPGRADES RAH PUBLIC SCHOOL. 24B G		STO	ONE STREET, KOGARAH, NSW	
				976LT1				R.L. Surface: ~17.9 m	
(Dat	e: 16/	1/2	5	Inclination:	VER	TICA	CAL Datum: AHD	
F	Pla	nt Typ	oe:	JK308	Bearing: N/	/A		Logged/Checked By: J.F./A.B.	
	Т				CORE DESCRIPTION			POINT LOAD DEFECT DETAILS	
Water	Rarrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	STRENGTH INDEX I _s (50) S ⁻ C	Formation
		-		- - - - - -	START CORING AT 0.68m	MW	M		
07-00-0		17	1-	-	SANDSTONE: fine to medium grained, light brown, with light grey bands, massive.			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
ON COMPLETION	DF CORING		2-		but with brown laminae, cross bedded at 0-20°.			I I	
98% RETURN		- - 15 -	3-		SANDSTONE: fine to coarse grained, light grey, with red brown bands and grey laminae, bedded at 0-10°.	HW	L	1 1	e
98% RE		-]	Extremely Weathered sandstone: sandy	XW	Hd		Sandstone
	13/2/25 1	 14 	4 -		silty CLAY, low plasticity, light grey and red brown, fine to medium grained sand. SANDSTONE: fine to medium grained, light grey, with orange brown laminae, bedded at 0-25°. as above, but light grey, with grey and dark grey laminae.	HW	L	0 .30 ¹ 1 1	Hawkesbury San
		13	5-				M		
		12-	6-		LAMINITE: Sandstone, fine to medium grained, grey, interbedded with Siltstone, dark grey, bedded at 0-5°.	FR	M - H	1 1 1 1 1 1 1 1 1 1	
					SANDSTONE: as below	FRACT		I 0.90I I I I I I I I I I IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Kd

	Pr	-	nt: ect: tion:		PROPO	DEPARTMENT OF EDUCATIO DSED UPGRADES RAH PUBLIC SCHOOL, 24B (STO	NE	E STRE	ET	, K(00	GARAH, NSW	
Γ,	Jo	bl	No.:	329	976LT1	Core Size:	NML	С					R	.L. Surface: ~17.9 m	
	Da	te	: 16/	1/2:	5	Inclination:	VER		۱L				D	atum: AHD	
	Pla	ant	t Typ	e:	JK308	Bearing: N	/A						L	ogged/Checked By: J.F./A.B.	
						CORE DESCRIPTION			P	DINT LOAD TRENGTH	-			DEFECT DETAILS	
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength		INDEX I₅(50)	()	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
						SANDSTONE: fine to medium grained, light grey, with grey and dark grey laminae, and occasional siltstone bands, bedded at 0-5° SANDSTONE: fine to medium grained, light grey, massive, indistinct occasional	FR	M-H H		•1.3				– – – – (7.37m) Be, 0°, P, S, Clay Vn – – –	
N.0 2018-03-20			10	8-		grey laminae, indistinctly bedded at 0-5°.								– – – – (8.13m) CS, 0°, 50 mm.t	
нбр Шъ. J.К. 9.02.4 2019-05-31 Ргј: J.К. 9.0	9- 9- SANDSTONE: fine to medium gr light grey, with grey laminae, cross-bedded at 10-20°.					SANDSTONE: fine to medium grained, light grey, with grey laminae, cross-bedded at 10-20°.	-			• • • • • • • • • • • • • • • • • • •				(9.07m) XWS, 0°, 10 mm.t	dstone
> 04/03/2025 14:51 10.01.00.01 Datgel Lab and In Situ Tool - D 98%	RETURN		- 8- - - - - - - - - - - - - - - - - -	10 - 11 -						+1.4 + +1.4 + +1.0 + +1.0 + +1.3 + +1.3 + +1.3 + +1.3 + +1.3 + +1.3 + +1.4 + +1.4 +++++++++++++++++++++++++	·				Hawkesbury Sandstone
TER 32976LT1 KOGARAH - JKE.GPJ < <drawingfile< th=""><th></th><th></th><th>- - 6 - -</th><th>12-</th><th></th><th>SANDSTONE: fine to medium grained, light grey, massive, with grey brown indistinctly cross-bedded at 10-20°.</th><th></th><th></th><th></th><th>1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1</th><th></th><th></th><th></th><th></th><th></th></drawingfile<>			- - 6 - -	12-		SANDSTONE: fine to medium grained, light grey, massive, with grey brown indistinctly cross-bedded at 10-20°.				1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1					
DLE - MAS	+	+			<u>_ :::::::</u> -	END OF BOREHOLE AT 12.72 m				2.3					
9.02.4 LIB.GLB Log JK CORED BOREHC											<u> </u>	200	20		
≚∟ CC)P\	/RI	GHT		1		FRACT	JRES N		MARKED				L DERED TO BE DRILLING AND HANDLING BRI	L EAKS

P	lient: rojec ocati	:t:	PROF	POSE	DU	PGRAI	DES	DUCATION DL, 24B GLADSTONE STREE	et, kog	ARAH	I, NSW	,
J	ob N	o.: 3	32976LT	1			Me	thod: HAND AUGER / SPIRA GER	AL R.	.L. Sur	face: [,]	~18.1 m
			25 TO 1		25				Da	atum:	AHD	
		l ype	: JK330)				gged/Checked By: J.F./A.B.				
Groundwater Record	SAMP		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
COMPLETION				18	-			FILL: Silty sand, fine to medium grained, brown, trace of fine to medium grained igneous gravel, plastic fragments, slag and root fibres.	M w <pl< th=""><th></th><th></th><th>GRASS COVER </th></pl<>			GRASS COVER
			N = 9 6,6,3		-			plasticity, dark grey brown, fine to medium grained sand, trace of plastic fragments and ash.	М			- APPEARS - MODERATELY - COMPACTED -
				17-	1-		-	FILL: SIlty sand, fine to medium grained, dark grey brown. SANDSTONE: fine to medium grained,	DW	м		THAND AUGER TO 0.55m HAWKESBURY SANDSTONE
					2			Corange brown.				MODERATE 'TC' BIT RESISTANCE GROUNDWATER MONITORING WELL INSTALLED TO 9.4m. CLASS 18 MACHINE SLOTTED 50mm DIA. PVC STANDPIPE 3.4m TO 9.4m. CASING 0.1m TO 3.4m. 2mm SAND FILTER PACK 2.9m TO 9.4m. BENTONITE SEAL 0.1m
					3-	-						- TO 2.9m. BACKFILLED - WITH SAND TO THE - SURFACE. COMPLETED - WITH A CONCRETED - GATIC COVER. - - - - - - - - -
				14		-						
				13 - - - - 12 - - - -	6							
				-								_

COPYRIGHT

F	-	nt: ect: ation		PROP	DEPARTMENT OF EDUCATION DSED UPGRADES RAH PUBLIC SCHOOL, 24B (STO	NE STRE	ET, KOG	GARAH, NSW	
J	ob	No.:	329	976LT1	Core Size:	NML	С		R.	L. Surface: ~18.1 m	
C	ate	ə: 31/	1/2	5 TO 10)/2/25 Inclination:	VER	RTICA	L	Da	atum: AHD	
P	lar	nt Typ	be:	JK330	Bearing: N	/A			Lo	ogged/Checked By: J.F./A.B.	
					CORE DESCRIPTION			POINT LOAD STRENGTH	L	DEFECT DETAILS	
Water Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	INDEX Is(50)	SPACING (mm) ଞ୍ଜି ଛି ଛ ଛ	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
		17		-	START CORING AT 1.32m					-	
98%		-		= 	SANDSTONE: fine to medium grained, orange brown, with light grey bands, bedded at 0-5°.	MW	L - M	•0.20			
		16-	2-	-	NO CORE 0.55m					-	
		- - 15-	3-		SANDSTONE: fine to medium grained, red brown, with light grey bands and laminae, bedded at 0-20°.	MW	M - H	•0.60 •0.60 •1.0		— (2.47m) Be, 0°, P, S, Clay Vn 	Hawkesbury Sandstone
		-	4-		as above, but bedded at 0-10°.	HW	L VL	•0.20 •0.20 •0.080 •0.080		— (3.38m) XWS, 5°, 40 mm.t — (3.95m) XWS, 0°, 5 mm.t	Hawkesbu
		14			NO CORE 0.05m SANDSTONE: fine to medium grained, red brown and light grey, bedded at 0-10°.	MW	L	•0.20 	6 0 0	-	
%0 %0			5-		as above, but light grey, with dark grey laminae.	FR		•0.20 		- (4.97m) Be, 0°, P, S, Clay Ct (4.97m) Be, 0°, P, S, Clay Ct	
		-		-			М			(5.41m) Be, 5°, P, R, Fe Vn -	e
			6-	= - - - - - - -				0.30		(5.77m) CS, 0°, 1 mm.t 	Hawkesbury Sandstone
	1 0/2/2/01	-						0.70 0.70		(6.37m) XWS, 0°, 60 mm.t	Hawkest
,		 11 - -	7 -					 •0.60 •0.70 •0.70 •0.70		- - (7.30m) Be, 0°, P, S, Clay Vn 	
				_	SANDSTONE: as below.	MW	M-H	0.30		(7.73m) Be, 0°, P, R, Fe Ct (7.78m) XWS, 0°, 30 mm,t 	

CORED BOREHOLE LOG

	Pr	-	nt: ect: ntion	I	PROP	DEPARTMENT OF EDUCATI DSED UPGRADES RAH PUBLIC SCHOOL, 24B		STO	NE STRE	ET, KOG	GARAH, NSW	
	Jo	b	No.:	329	976LT1	Core Size:	NML	С		R.	.L. Surface: ~18.1 m	
	Da	ate	: 31/	1/25	5 TO 10	D/2/25 Inclination	: VEF	RTICA	L	Da	atum: AHD	
	Pl	an	t Typ	be: 、	JK330	Bearing: N	I/A			Lo	ogged/Checked By: J.F./A.B.	
			~			CORE DESCRIPTION			POINT LOAD STRENGTH	L	DEFECT DETAILS	
Water	Loss/Level	Barrel Lift	RL (m AHD)	Depth (m)	Graphic Log	Rock Type, grain characteristics, colour, texture and fabric, features, inclusions and minor components	Weathering	Strength	INDEX I₅(50)	SPACING (mm) ଞି ଝି ଛ ଝ	DESCRIPTION Type, orientation, defect shape and roughness, defect coatings and seams, openness and thickness Specific General	Formation
07-0			10 - - - 9	- - - - - - - - - - - - - - - - - - -		SANDSTONE: fine to medium grained, orange brown, with red brown and light grey bands, bedded at 0-15°. as above, but bedded at 0-30°. SANDSTONE: fine to medium grained, orange brown and light grey, bedded at 0-15°.	MW	M-H	110 22 22 100 10			
1 2019-05-31 FrJ; JN 9.01.0 2010-00	0% RETURN		- - - 8 —	- - - - - - - - - - - - - - - - - - -		SANDSTONE: fine to medium grained, red brown and orange brown, bedded at 0-10°.		н	• • • 1.3 • 1.3 • 1.3 		(9.40m) Be, 0°, P, R, Fe Ct	Hawkesbury Sandstone
10.01.00.01 Datger Lab and III old 1001- DGD DD. JN 302.3	-		- - - 7 -	- - - - - - - - - - - - - - - - - - -					1 1 2.0 1 1 1 1.0	- 660 - 2200		Hawkest
16:41 0202			-	- - 12-		as above, but with light grey bands.			2.3		-	
* LIBJOLD LOG JN CONED DONEHOLE - MAOI EN 328/01.11 NOGANAM - JN E.GYJ < <ur></ur>			6			END OF BOREHOLE AT 12.05 m						
			- IGHT		-						- - DERED TO BE DRILLING AND HANDLING BR	

COPYRIGH

F	Pro	ent: jec :ati		PROF	OSE	DU	PGRAI	DES	DUCATION DL, 24B GLADSTONE STREE	et, kog	ARAF	I, NSW	,
	lob	N	b.: 3	2976LT	1			Ме	thod: HAND AUGER	R.	L. Sur	face: ~	~20.0 m
			31/1/							Da	atum:	AHD	
	Plai	nt 1	Гуре	: -	1			Lo	gged/Checked By: J.F./A.B.				
Groundwater	ES SE	AMP 020		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
					-	-			FILL: Silty sand, fine to medium grained, dark grey, trace of root fibres. FILL: Sandy silty clay, low plasticity, brown, fine to medium grained sand. FILL: Sandy silty clay, low plasticity, light brown, fine to medium grained sand, trace of fine to medium grained	M w>PL			GRASS COVER - SCREEN: 10.25kg, - 0-0.1m, NO FCF - -
					- 19 -	1			as above, but dark grey. END OF BOREHOLE AT 0.95 m				HAND AUGER REFUSAL ON INFERRED SANDSTONE BEDROCK
					18	2	-						-
					17	3	-						-
					16	4							-
					15 - - - - 14	5 - - - 6							-
		RIGI			-	-	-						-

Log No. BH210 1/1

Client: Project: Location:	PROPOSE	D ALTERA	OF EDUCATION TIONS AND ADDITIONS CHOOL, 24B GLADSTONE ST	REET, K	(OGAI	RAH, N	SW
Job No.: E3 Date: 16/1/2 Plant Type:	5		thod: HAND AUGER gged/Checked by: V.R./T.H.			.L. Surf atum:	
Groundwater Record ES ASB SAMPLES SAMPLES DB	Field Tests Depth (m)	Graphic Log Unified	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
	0 0.5 - 1 - 1.5 - 2 - 2.5 - 3 - 3.5		ASPHALTIC CONCRETE: 50mm.t FILL: Gravel, fine to coarse grained, angular igneous, grey, trace of sand, and slag. FILL: Silty sand, fine to medium grained, grey brown, trace of sandstone gravel. FILL: Silty sandy clay, low to medium plasticity, dark brown. END OF BOREHOLE AT 0.6m	D M /			ROAD BASE INSUFFICIENT RETURN FOR BULK SCREEN HAND AUGER SANDSTONE BEDROCK SANDSTONE BEDROCK

Log No. BH211 1/1

Client: Project: Location:	PROPOSE	D ALTERAT	F EDUCATION IONS AND ADDITIONS HOOL, 24B GLADSTONE STR	REET, K	OGAI	RAH, NS	SW
Job No.: E3 Date: 16/1/2 Plant Type:	5		nod: HAND AUGER ged/Checked by: V.R./T.H.			.L. Surf	
Groundwater Record ASB ASB ASB SAMPLES DB	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			ASPHALTIC CONCRETE: 50mm.t FILL: Gravel, fine to coarse grained, angular igneous, trace of sand, and slag. FILL: Silty sand, fine to medium grained, dark brown, trace of sandstone gravel and glass [fragments. END OF BOREHOLE AT 0.35m				INSUFFICIENT RETURN FOR BULK SCREEN HAND AUGER REFUSAL ON INFERRED SANDSTONE BEDROCK

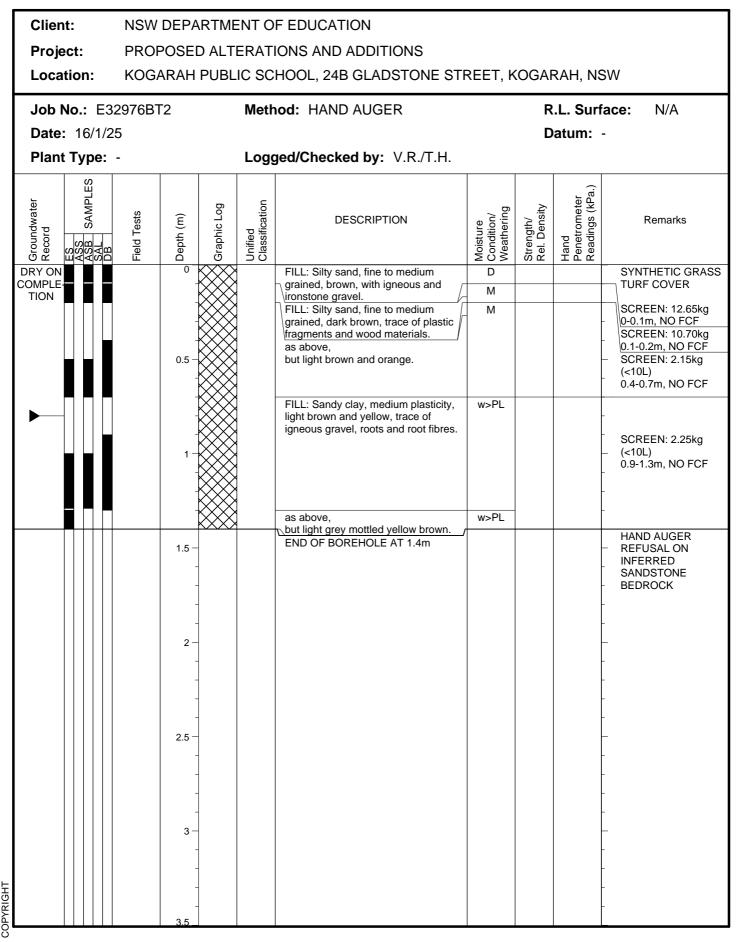
Log No. BH212 1/1

Client: Project Locatio	t:	PROP	OSEI	D ALTI	ERAT	F EDUCATION IONS AND ADDITIONS HOOL, 24B GLADSTONE STR	REET, K	OGAF	RAH, NS	SW
Job No Date: Plant T	16/1/2	5	2			od: HAND AUGER ged/Checked by: J.T.L./T.H.			.L. Surf atum:	
Groundwater Record ES	ASS ASB SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			0			ASPHALTIC CONCRETE: 100mm.t				
			-		-	 FILL: Gravel, fine to coarse grained, angular igneous, grey, trace of sand.// FILL: Silty sand, fine to medium grained, dark brown, trace of sandstone gravel. 	M /			ROAD BASE INSUFFICIENT RETURN FOR BULK SCREEN
COPYRIGHT			0.5 - - - - - - - - - - - - - - - - - - -			END OF BOREHOLE AT 0.45m				SCREEN: 0.85kg (<10L) 0.15-0.45m, NO FCF HAND AUGER REFUSAL ON INFERRED SANDSTONE BEDROCK

	lien [:] roje					MENT PGRAI		DUCATION				
	-	tion:						DL, 24B GLADSTONE STREE	T, KOG	GARAH	I, NSW	,
J	ob N	lo.: 3	32976LT	1			Me	thod: HAND AUGER	R.	.L. Sur	face: [,]	~18.4 m
		31/1							Da	atum:	AHD	
P	lant	Туре	9: -		1		Lo	gged/Checked By: J.F./A.B.		1		
Groundwater Record	SAM D20	PLES 80	Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION				- 18 –				FILL: Silty sand, fine to medium grained, dark grey, trace of fine to medium grained igneous gravel, ash, slag and root fibres. as above, but trace of fine to medium grained	Μ			GRASS COVER - - SCREEN: 11.05kg, - 0-0.1m, NO FCF -
				-	- 1-			Vironstone gravel.				- HAND AUGER REFUSAL - ON OBSTRUCTION IN FILL - -
				17								-
				-	2-							- -
				16 <i>-</i> -	-							-
				-	3-							- - - -
				15	-							-
				-	4-							-
				14 — -								-
				-	5-							-
				13 — - -								-
				-	6-							-
	PYRIC			12								-

1/1

ſ	Clier						F EDUCATION				
	Proje Loca	ect: ation:					ONS AND ADDITIONS HOOL, 24B GLADSTONE STF	REET, K	OGA	RAH, NS	SW
	Date	No.: E3 : 16/1/2 t Type:	5	2			od: HAND AUGER ged/Checked by: J.T.L./T.H.			.L. Suri atum:	
	Groundwater Record	ES ASS AMPLES SAL DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
			Ë		Ū	<u>-</u>	ASPHALTIC CONCRETE: 50mm.t FILL: Gravel, fine to coarse grained, angular igneous, grey, trace of sand and slag. FILL: Silty sand, fine to medium grained, grey brown, trace of sandstone and ironstone gravel. as above, but dark brown. END OF BOREHOLE AT 0.4m				INSUFFICIENT RETURN FOR BULK SCREEN INSUFFICIENT RETURN FOR BULK SCREEN INSUFFICIENT RETURN FOR BULK SCREEN HAND AUGER REFUSAL ON INFERRED SANDSTONE BEDROCK
COPYRIGHT				- 3 - - - - 3.5							-



Client	t:	NSW D	EPA	RTME	INT O	F EDUCATION				
Proje						ONS AND ADDITIONS				
Locat	ion:	KOGAF	RAHI	PUBL	IC SC	HOOL, 24B GLADSTONE STF	REET, K	OGA	RAH, NS	SW
		2976BT2 -			Meth	od: HAND AUGER / HAND T	OOLS		.L. Surf	
	15/1/2 Type:					ged/Checked by: V.R./T.H.		D	atum:	-
1 Iant					LUGE					
	LES ASS SAL DB DB	Field Tests	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks
DRY ON COMPLE			0 ×	\bigotimes		FILL: Gravelly sand, fine to medium grained, brown, with igneous and	М			ARTIFICIAL TURF
TION			-× × -× -0.5 - - - - - - - - - - - - - - - - - - -			sandstone gravel, trace of tile, red brick and plastic fragments. FILL: Silty sand, fine to medium grained, dark brown, with wood material and root fibres, trace of sandstone and ironstone gravel and slag. END OF BOREHOLE AT 0.5m	W			SCREEN: 14.88kg 0-0.1m, NO FCF INSUFFICIENT RETURN FOR BULK SCREEN SCREEN: 11.65kg 0.2-0.5m, NO FCF GEOFABRIC AT BASE OF BOREHOLE HAND AUGER REFUSAL ON INFERRED SANDSTONE BEDROCK
COPYRIGH			2							

JKEnvironments ENVIRONMENTAL LOG

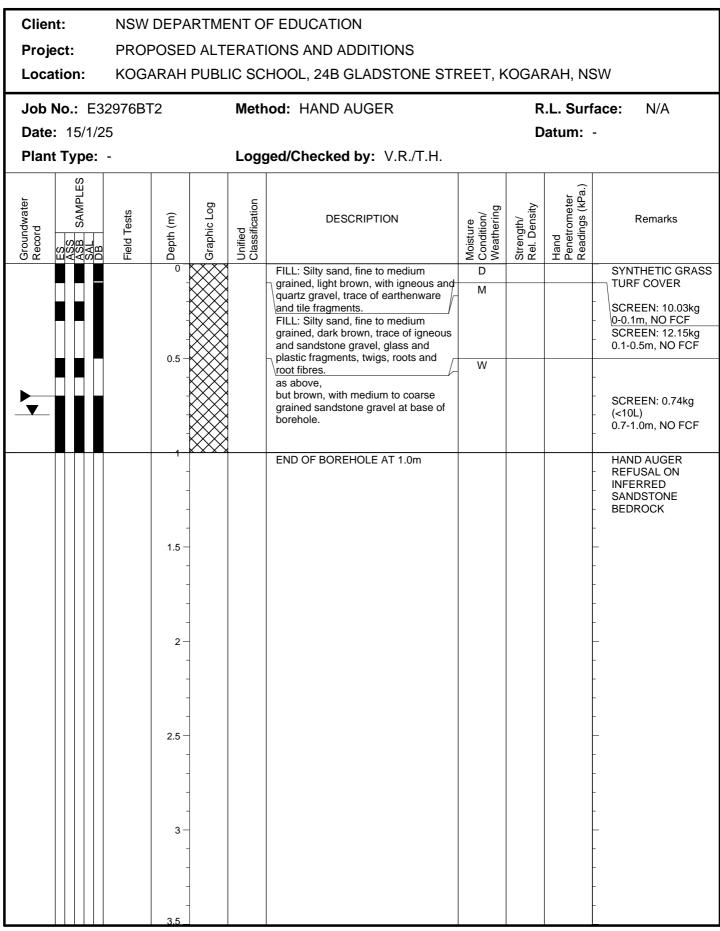
Environmental logs are not to be used for geotechnical purposes

JKEnvironments ENVIRONMENTAL LOG

Environmental logs are not to be used for geotechnical purposes

Client: Project: Location:	PROPOSE	NSW DEPARTMENT OF EDUCATION PROPOSED ALTERATIONS AND ADDITIONS KOGARAH PUBLIC SCHOOL, 24B GLADSTONE STREET, KOGARAH, NSW								
Job No.: E3 Date: 15/1/2 Plant Type:	25		nod: HAND AUGER ged/Checked by: V.R./T.H.		R.L. Surface: N/A Datum: -					
Groundwater Record ES ASB SAMPLES SAMPLES	Field Tests Depth (m)	Graphic Log Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel. Density	Hand Penetrometer Readings (kPa.)	Remarks			
DRY ON COMPLE- TION	0.5 -		FILL: Silty sand, fine to medium grained, brown, with igneous and quartz gravel, trace of twigs. FILL: Silty sand, fine to medium grained, dark brown, trace of igneous gravel and plastic and wire fragments.	M M W			SYNTHETIC GRASS TURF COVER SCREEN: 13.22kg 0-0.1m, NO FCF SCREEN: 10.14kg 0.1-0.3m, NO FCF INSUFFICIENT RETURN FOR BULK			
COPRIGHT	1 - 1.5 - 2 - 2.5 - 3 - 3.5		END OF BOREHOLE AT 0.6m				SCREEN HAND AUGER REFUSAL ON INFERRED SANDSTONE BEDROCK			

BOREHOLE LOG



	lient: rojec			NSW DEPARTMENT OF EDUCATION PROPOSED UPGRADES								
L	ocati	on:	KOGA	RAH	I PU	BLIC S	СНОС	DL, 24B GLADSTONE STREE	ET, KOG	ARAH	I, NSW	
J	ob No	5.: 3	2976LT	2976LT1 Method: HAND AUGER R.L. Surface: ~17.5 m								~17.5 m
	ate: 3											
P	lant 1	Гуре	-				Lo	gged/Checked By: J.F./A.B.	1			
Groundwater Record	SAMP		Field Tests	RL (m AHD)	Depth (m)	Graphic Log	Unified Classification	DESCRIPTION	Moisture Condition/ Weathering	Strength/ Rel Density	Hand Penetrometer Readings (kPa)	Remarks
DRY ON COMPLETION				-	-			FILL: Silty sand, fine to medium grained, dark brown, trace of fine to medium grained ironstone gravel, brick and concrete fragments, and slag.	М			 SCREEN: 13.3kg, 0-0.1m, NO FCF
8				17-	-			END OF BOREHOLE AT 0.45 m				HAND AUGER REFUSAL ON OBSTRUCTION IN FILL
				-	1							
				16 -	-							-
•				-	2-							-
				15-	-							-
				-	3-							- - -
				14	-							- - - -
				-	- 4 -							- - -
•				13-	-							- - - -
				-	- 5							- -
				12-	-							-
				-	6-							- -
5				- 11-	-							-
	YRIG			_								-

JKEnvironments ENVIRONMENTAL LOG

Log No. BH219 1/1

Environmental logs are not to be used for geotechnical purposes

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Soil Classification	Particle Size
Clay	< 0.002mm
Silt	0.002 to 0.075mm
Sand	0.075 to 2.36mm
Gravel	2.36 to 63mm
Cobbles	63 to 200mm
Boulders	> 200mm

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)	
Very Soft (VS)	≤25	≤12	
Soft (S)	> 25 and \leq 50	> 12 and \leq 25	
Firm (F)	> 50 and \leq 100	> 25 and \leq 50	
Stiff (St)	$>$ 100 and \leq 200	> 50 and \leq 100	
Very Stiff (VSt)	$>$ 200 and \leq 400	$>$ 100 and \leq 200	
Hard (Hd)	> 400	> 200	
Friable (Fr)	Strength not attainable – soil crumbles		

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, together with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

• In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

N = 13 4, 6, 7

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

> N > 30 15, 30/40mm

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N_c' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

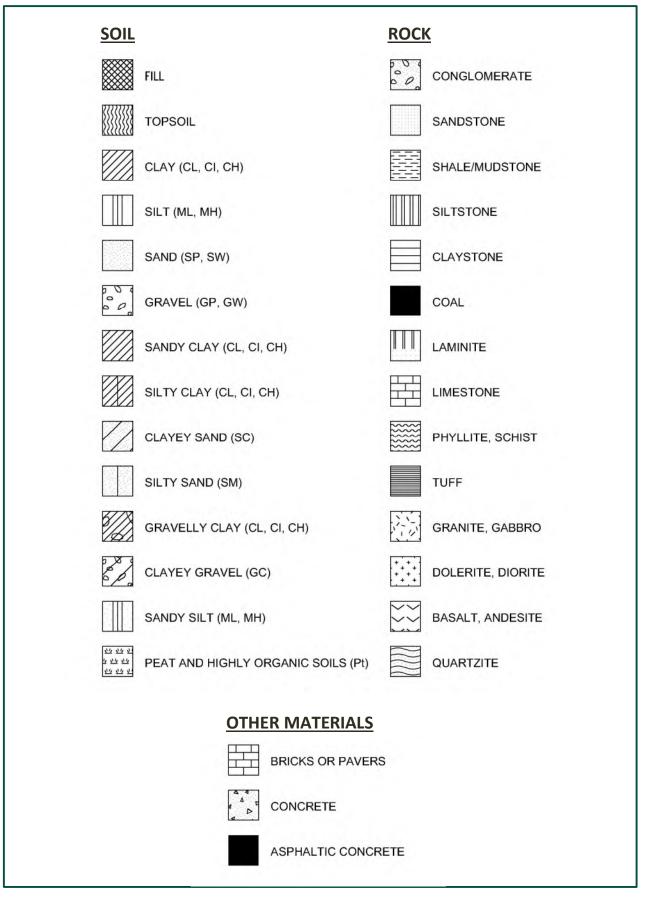
Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.


The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs unless noted in the report.

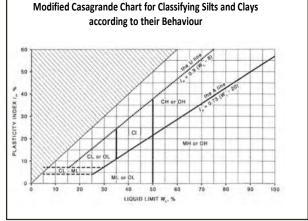
SYMBOL LEGENDS

CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Ma	ajor Divisions	Group Symbol	Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
ianis	GRAVEL (more than half	GW	Gravel and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
Coarse grained soil (more than 63% of soil excluding oversize fraction is greater than 0.075mm)	of coarse fraction is larger than 2.36mm	GP	Gravel and gravel-sand mixtures, little or no fines, uniform gravels	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
luding ove		GM	Gravel-silt mixtures and gravel- sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
65% of sail exdu than 0.075mm)		GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
re than 65% greater than	SAND (more than half	SW	Sand and gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Cu>6 1 <cc<3< td=""></cc<3<>
ail (mare gn	of coarse fraction is smaller than	SP	Sand and gravel-sand mixtures, little or no fines	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength	≤ 5% fines	Fails to comply with above
egraineds	2.36mm)	SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	
Coarse		SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

	Major Divisions S		Group		Field Classification of Silt and Clay				
Majo			Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm		
alpr	SILT and CLAY (low to medium plasticity) CL, Cl CL, CL, CL CL, CL, CL, CL CL, CL, CL, CL, CL, CL, CL, CL, CL, CL,		Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line		
of sail exdu 0.075mm)			Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line		
an 35% ssthan			Organic silt	Low to medium	Slow	Low	Below A line		
onisle			Inorganic silt	Low to medium	None to slow	Low to medium	Below A line		
soils (m te fracti			Inorganic clay of high plasticity	High to very high	None	High	Above A line		
ne grained : oversiz		ОН	Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line		
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-		

Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity Cu > 4 and the coefficient of curvature $1 < C_c < 3$. Otherwise, the soil is poorly graded. These coefficients are given by:

$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10}D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 2 Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

JKEnvironments

LOG SYMBOLS

Log Column	Symbol	Definition				
Groundwater Record		Standing water level. Time delay following completion of drilling/excavation may be shown.				
	— с —	Extent of borehole/test pit collapse shortly after drilling/excavation.				
		Groundwater seepage into borehole or test pit noted during drilling or excavation.				
Samples	ES	Sample taken over depth indicated, for environmental analysis.				
	U50	Undisturbed 50mm diameter tube sample taken over depth indicated.				
	DB	Bulk disturbed sample taken over depth indicated.				
	DS	Small disturbed bag sample taken over depth indicated.				
	ASB	Soil sample taken over depth indicated, for asbestos analysis.				
	ASS	Soil sample taken over depth indicated, for acid sulfate soil analysis.				
	SAL	Soil sample taken over depth indicated, for salinity analysis.				
	PFAS	Soil sample taken over depth indicated, for analysis of Per- and Polyfluoroalkyl Substances.				
Field Tests	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration. 'Refusal' refers to apparent hammer refusal within the corresponding 150mm depth increment.				
	N _c = 5 7 3R	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Individual figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R' refers to apparent hammer refusal within the corresponding 150mm depth increment.				
	VNS = 25	Vane shear reading in kPa of undrained shear strength.				
	PID = 100	Photoionisation detector reading in ppm (soil sample headspace test).				
Moisture Condition	w > PL	Moisture content estimated to be greater than plastic limit.				
(Fine Grained Soils)	w≈PL	Moisture content estimated to be approximately equal to plastic limit.				
	w < PL	Moisture content estimated to be less than plastic limit.				
	w≈LL	Moisture content estimated to be near liquid limit.				
	w > LL	Moisture content estimated to be wet of liquid limit.				
(Coarse Grained Soils)	D	DRY – runs freely through fingers.				
	М	MOIST – does not run freely but no free water visible on soil surface.				
	W	WET – free water visible on soil surface.				
Strength (Consistency)	VS	VERY SOFT – unconfined compressive strength \leq 25kPa.				
Cohesive Soils	S	SOFT – unconfined compressive strength > 25kPa and \leq 50kPa.				
	F	FIRM $-$ unconfined compressive strength > 50kPa and \leq 100kPa.				
	St	STIFF – unconfined compressive strength > 100kPa and \leq 200kPa.				
	VSt	VERY STIFF – unconfined compressive strength > 200kPa and \leq 400kPa.				
	Hd	HARD – unconfined compressive strength > 400kPa.				
	Fr	FRIABLE – strength not attainable, soil crumbles.				
	()	Bracketed symbol indicates estimated consistency based on tactile examination or other assessment.				
Density Index/ Relative Density		Density Index (I _D) SPT 'N' Value Range Range (%) (Blows/300mm)				
(Cohesionless Soils)	VL	VERY LOOSE ≤ 15 0-4				
	L	LOOSE > 15 and \leq 35 4 - 10				
	MD	MEDIUM DENSE > 35 and \leq 65 10 - 30				
	D	DENSE > 65 and \leq 85 30 - 50				
	VD	VERY DENSE > 85 > 50				
	()	Bracketed symbol indicates estimated density based on ease of drilling or other assessment.				

Log Column	Symbol	Definition				
Hand Penetrometer Readings	300 250	Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.				
Remarks	'V' bit	Hardened steel 'V' shaped bit.				
	'TC' bit	Twin pronged tungsten carbide bit.				
	T_{60}	Penetration of auger string in mm under static load of rig applied by drill head hydrau without rotation of augers.				
	Soil Origin	The geological or	igin of the soil can generally be described as:			
		RESIDUAL	 soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. 			
		EXTREMELY WEATHERED	 soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. 			
		ALLUVIAL	 soil deposited by creeks and rivers. 			
		ESTUARINE	 soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. 			
		MARINE	 soil deposited in a marine environment. 			
		AEOLIAN	 soil carried and deposited by wind. 			
		COLLUVIAL	 soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit formed from a landslide. The description 'slopewash' is used for thinner surficial deposits. 			
		LITTORAL	 beach deposited soil. 			

Classification of Material Weathering

Term	Abbreviation		Definition	
Residual Soil	R	S	Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.	
Extremely Weathered	xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.	
Highly Weathered	Distinctly Weathered	HW DW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
Moderately Weathered	(Note 1)			The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	FR		Rock shows no sign of decomposition of individual minerals or colour changes.	

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: '*Rock strength usually changed by weathering.* The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'. There is some change in rock strength.

Rock Material Strength Classification

			Guide to Strength				
Term	Abbreviation	Uniaxial Compressive Strength (MPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment			
Very Low Strength	VL	0.6 to 2	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.			
Low Strength	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.			
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.			
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.			
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.			
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.			

Appendix D: Laboratory Report(s) & COC Documents

CERTIFICATE OF ANALYSIS 370762

Client Details	
Client	JK Environments
Attention	Katrina Taylor
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32976BT2 - Kogarah
Number of Samples	33 Soil
Date samples received	17/01/2025
Date completed instructions received	17/01/2025

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	24/01/2025
Date of Issue	24/01/2025
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Amanda Lee Authorised by Asbestos Approved Signatory: Lucy Zhu **Results Approved By** Giovanni Agosti, Group Technical Manager Jack Wallis, Senior Chemist Liam Timmins, Organics Supervisor Lucy Zhu, Asbestos Supervisor Timothy Toll, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		370762-1	370762-2	370762-4	370762-6	370762-8
Your Reference	UNITS	BH203	BH203	BH207	BH210	BH210
Depth		0.1-0.2	0.3-0.4	0-0.1	0.05-0.1	0.55-0.6
Date Sampled		15/01/2025	15/01/2025	16/01/2025	16/01/2025	16/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	74	89	92	86	85
vTRH(C6-C10)/BTEXN in Soil						
Our Reference		370762-10	370762-11	370762-14	370762-15	370762-16
Your Reference	UNITS	BH211	BH212	BH214	BH214	BH215
Depth		0.2-0.3	0.1-0.15	0.2-0.3	0.3-0.4	0-0.1
Date Sampled		16/01/2025	16/01/2025	16/01/2025	16/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
		<1	<1	<1	<1	<1
Ethylbenzene	mg/kg	N				
Ethylbenzene m+p-xylene	mg/kg mg/kg	<2	<2	<2	<2	<2
				<2 <1		<2 <1
m+p-xylene	mg/kg	<2	<2		<2	
m+p-xylene o-Xylene	mg/kg mg/kg	<2 <1	<2 <1	<1	<2 <1	<1

Our Reference		370762-17	370762-18	370762-21	370762-23	370762-24
Your Reference	UNITS	BH215	BH216	BH216	BH217	BH217
Depth		0.2-0.3	0-0.1	1-1.3	0-0.1	0.2-0.3
Date Sampled		15/01/2025	15/01/2025	15/01/2025	15/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	85	90	75	86	98
vTRH(C6-C10)/BTEXN in Soil						
0 D (
Our Reference		370762-26	370762-28	370762-30	370762-31	370762-32
Our Reference Your Reference	UNITS	370762-26 BH219	370762-28 BH219	370762-30 SDUP201	370762-31 TS-S201	370762-32 TB-S201
	UNITS					
Your Reference	UNITS	BH219	BH219			
Your Reference Depth	UNITS	BH219 0-0.1	BH219 0.5-0.6	SDUP201 -	TS-S201 -	TB-S201 -
Your Reference Depth Date Sampled	UNITS -	BH219 0-0.1 15/01/2025	BH219 0.5-0.6 15/01/2025	SDUP201 - 15/01/2025	TS-S201 - 15/01/2025	TB-S201 - 15/01/2025
Your Reference Depth Date Sampled Type of sample	UNITS - -	BH219 0-0.1 15/01/2025 Soil	BH219 0.5-0.6 15/01/2025 Soil	SDUP201 - 15/01/2025 Soil	TS-S201 - 15/01/2025 Soil	TB-S201 - 15/01/2025 Soil
Your Reference Depth Date Sampled Type of sample Date extracted	UNITS - - mg/kg	BH219 0-0.1 15/01/2025 Soil 21/01/2025	BH219 0.5-0.6 15/01/2025 Soil 21/01/2025	SDUP201 - 15/01/2025 Soil 21/01/2025	TS-S201 - 15/01/2025 Soil 21/01/2025	TB-S201 - 15/01/2025 Soil 21/01/2025
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	-	BH219 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025	BH219 0.5-0.6 15/01/2025 Soil 21/01/2025 22/01/2025	SDUP201 - 15/01/2025 Soil 21/01/2025 22/01/2025	TS-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025	TB-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	- - mg/kg	BH219 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <25	BH219 0.5-0.6 15/01/2025 Soil 21/01/2025 22/01/2025 <25	SDUP201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <25	TS-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 [NA]	TB-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <25
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10	- - mg/kg mg/kg	BH219 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25	BH219 0.5-0.6 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25	SDUP201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25	TS-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 [NA] [NA]	TB-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTRH $C_6 - C_{10}$ less BTEX (F1)	- - mg/kg mg/kg mg/kg	BH219 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25	BH219 0.5-0.6 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25	SDUP201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25	TS-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 [NA] [NA] [NA]	TB-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTRH $C_6 - C_{10}$ less BTEX (F1) Benzene	- - mg/kg mg/kg mg/kg mg/kg	BH219 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25 <25 <0.2	BH219 0.5-0.6 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25 <25 <0.2	SDUP201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25 <0.2	TS-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 [NA] [NA] [NA] 82%	TB-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25 <25 <0.2
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTRH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene	- - mg/kg mg/kg mg/kg mg/kg mg/kg	BH219 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25 <25 <0.2 <0.2	BH219 0.5-0.6 15/01/2025 Soil 21/01/2025 <22/01/2025 <25 <25 <25 <0.2 <0.2 <0.5	SDUP201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25 <25 <0.2 <0.2	TS-S201 - 15/01/2025 Soil 21/01/2025 (NA] (NA] (NA] 82% 82%	TB-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25 <25 <0.2 <0.2
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTRH $C_6 - C_{10}$ less BTEX (F1) Benzene Toluene Ethylbenzene	- - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH219 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <225 <25 <25 <0.2 <0.2 <0.5	BH219 0.5-0.6 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25 <25 <0.2 <0.2 <0.5	SDUP201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25 <0.2 <0.2 <0.5 <1	TS-S201 - 15/01/2025 Soil 21/01/2025 (NA) (NA) (NA) (NA) 82% 82% 82%	TB-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <225 <25 <25 <25 <0.2 <0.2 <0.5
Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 vTRH C6 - C10 less BTEX (F1) Benzene Toluene Ethylbenzene m+p-xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH219 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	BH219 0.5-0.6 15/01/2025 Soil 21/01/2025 22/01/2025 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	SDUP201 - 15/01/2025 Soil 21/01/2025 (22/01/2025) (2	TS-S201 - 15/01/2025 Soil 21/01/2025 (NA] (NA] (NA] (NA] 82% 82% 81% 82%	TB-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <225 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
Your Reference Depth Date Sampled Type of sample Date extracted Date extracted Date analysed TRH C6 - C9 TRH C6 - C9 TRH C6 - C10 vTRH C6 - C10 senzene Toluene Ethylbenzene m+p-xylene o-Xylene	- mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	BH219 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <225 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <2 <1	BH219 0.5-0.6 15/01/2025 Soil 21/01/2025 22/01/2025 <225 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	SDUP201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <225 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1	TS-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 (NA) (NA) (NA) (NA) 82% 82% 82% 81% 82% 81%	TB-S201 - 15/01/2025 Soil 21/01/2025 22/01/2025 <225 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1

svTRH (C10-C40) in Soil						
Our Reference		370762-1	370762-2	370762-4	370762-6	370762-8
Your Reference	UNITS	BH203	BH203	BH207	BH210	BH210
Depth		0.1-0.2	0.3-0.4	0-0.1	0.05-0.1	0.55-0.6
Date Sampled		15/01/2025	15/01/2025	16/01/2025	16/01/2025	16/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	21/01/2025	21/01/2025	22/01/2025	21/01/2025
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	220	<100	<100	120	<100
TRH C ₂₉ - C ₃₆	mg/kg	430	100	<100	390	<100
Total +ve TRH (C10-C36)	mg/kg	650	100	<50	510	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	460	130	<100	370	<100
TRH >C ₃₄ -C ₄₀	mg/kg	680	140	<100	490	<100
Total +ve TRH (>C10-C40)	mg/kg	1,100	270	<50	870	<50
Surregete a Tarphonyl	%	00	00	75	76	92
Surrogate o-Terphenyl	70	98	92	75	70	92
svTRH (C10-C40) in Soil	70	98	92	75	70	92
	70	98 370762-10	92 370762-11	370762-14	370762-15	370762-16
svTRH (C10-C40) in Soil	UNITS					
svTRH (C10-C40) in Soil Our Reference		370762-10	370762-11	370762-14	370762-15	370762-16
svTRH (C10-C40) in Soil Our Reference Your Reference		370762-10 BH211	370762-11 BH212	370762-14 BH214	370762-15 BH214	370762-16 BH215
svTRH (C10-C40) in Soil Our Reference Your Reference Depth		370762-10 BH211 0.2-0.3	370762-11 BH212 0.1-0.15	370762-14 BH214 0.2-0.3	370762-15 BH214 0.3-0.4	370762-16 BH215 0-0.1
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled		370762-10 BH211 0.2-0.3 16/01/2025	370762-11 BH212 0.1-0.15 16/01/2025	370762-14 BH214 0.2-0.3 16/01/2025	370762-15 BH214 0.3-0.4 16/01/2025	370762-16 BH215 0-0.1 15/01/2025
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample		370762-10 BH211 0.2-0.3 16/01/2025 Soil	370762-11 BH212 0.1-0.15 16/01/2025 Soil	370762-14 BH214 0.2-0.3 16/01/2025 Soil	370762-15 BH214 0.3-0.4 16/01/2025 Soil	370762-16 BH215 0-0.1 15/01/2025 Soil
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted		370762-10 BH211 0.2-0.3 16/01/2025 Soil 21/01/2025	370762-11 BH212 0.1-0.15 16/01/2025 Soil 21/01/2025	370762-14 BH214 0.2-0.3 16/01/2025 Soil 21/01/2025	370762-15 BH214 0.3-0.4 16/01/2025 Soil 21/01/2025	370762-16 BH215 0-0.1 15/01/2025 Soil 21/01/2025
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	UNITS - -	370762-10 BH211 0.2-0.3 16/01/2025 Soil 21/01/2025 21/01/2025	370762-11 BH212 0.1-0.15 16/01/2025 Soil 21/01/2025 21/01/2025	370762-14 BH214 0.2-0.3 16/01/2025 Soil 21/01/2025 22/01/2025	370762-15 BH214 0.3-0.4 16/01/2025 Soil 21/01/2025 22/01/2025	370762-16 BH215 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄	UNITS - - mg/kg	370762-10 BH211 0.2-0.3 16/01/2025 Soil 21/01/2025 21/01/2025 <50	370762-11 BH212 0.1-0.15 16/01/2025 Soil 21/01/2025 21/01/2025 <50	370762-14 BH214 0.2-0.3 16/01/2025 Soil 21/01/2025 22/01/2025 <50	370762-15 BH214 0.3-0.4 16/01/2025 Soil 21/01/2025 22/01/2025 <50	370762-16 BH215 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <50
SVTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈	UNITS - mg/kg mg/kg	370762-10 BH211 0.2-0.3 16/01/2025 Soil 21/01/2025 21/01/2025 <50 <100	370762-11 BH212 0.1-0.15 16/01/2025 Soil 21/01/2025 21/01/2025 <50 <100	370762-14 BH214 0.2-0.3 16/01/2025 Soil 21/01/2025 22/01/2025 <50 <100	370762-15 BH214 0.3-0.4 16/01/2025 Soil 21/01/2025 22/01/2025 <50 <100	370762-16 BH215 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <50 <100
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C10 - C14 TRH C15 - C28 TRH C29 - C36	UNITS - mg/kg mg/kg mg/kg	370762-10 BH211 0.2-0.3 16/01/2025 Soil 21/01/2025 21/01/2025 <50 <100 <100	370762-11 BH212 0.1-0.15 16/01/2025 Soil 21/01/2025 21/01/2025 <50 <100 150	370762-14 BH214 0.2-0.3 16/01/2025 Soil 21/01/2025 22/01/2025 <50 <100 <100	370762-15 BH214 0.3-0.4 16/01/2025 Soil 21/01/2025 22/01/2025 <50 <100 <100	370762-16 BH215 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <50 <100 <100
svTRH (C10-C40) in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₁₀ - C ₁₄ TRH C ₁₅ - C ₂₈ TRH C ₂₉ - C ₃₆ Total +ve TRH (C10-C36)	UNITS - - mg/kg mg/kg mg/kg mg/kg	370762-10 BH211 0.2-0.3 16/01/2025 Soil 21/01/2025 21/01/2025 <50 <100 <100 <50	370762-11 BH212 0.1-0.15 16/01/2025 Soil 21/01/2025 21/01/2025 <50 <100 150 150	370762-14 BH214 0.2-0.3 16/01/2025 Soil 21/01/2025 22/01/2025 <50 <100 <100 <50	370762-15 BH214 0.3-0.4 16/01/2025 Soil 21/01/2025 22/01/2025 <50 <100 <100 <50	370762-16 BH215 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <50 <100 <100 <50
svTRH (C10-C40) in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 - C16	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	370762-10 BH211 0.2-0.3 16/01/2025 Soil 21/01/2025 21/01/2025 <50 <100 <100 <50 <50 <50	370762-11 BH212 0.1-0.15 16/01/2025 Soil 21/01/2025 21/01/2025 <50 <100 150 150 <50	370762-14 BH214 0.2-0.3 16/01/2025 Soil 21/01/2025 22/01/2025 <50 <100 <100 <50 <50 <50	370762-15 BH214 0.3-0.4 16/01/2025 Soil 21/01/2025 22/01/2025 <50 <100 <100 <50 <50 <50	370762-16 BH215 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <50 <100 <100 <50 <50
svTRH (C10-C40) in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_{10} - C_{14}$ TRH $C_{15} - C_{28}$ TRH $C_{29} - C_{36}$ Total +ve TRH (C10-C36)TRH >C10 -C16TRH >C10 -C16 less Naphthalene (F2)	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	370762-10 BH211 0.2-0.3 16/01/2025 Soil 21/01/2025 21/01/2025 <50 <100 <100 <50 <50 <50 <50 <50	370762-11 BH212 0.1-0.15 16/01/2025 Soil 21/01/2025 <21/01/2025 <50 <100 150 150 <50 <50 <50	370762-14 BH214 0.2-0.3 16/01/2025 Soil 21/01/2025 22/01/2025 <50 <100 <100 <50 <50 <50 <50 <50 <50	370762-15 BH214 0.3-0.4 16/01/2025 Soil 21/01/2025 22/01/2025 <22/01/2025 <50 <100 <100 <50 <50 <50 <50 <50	370762-16 BH215 0-0.1 15/01/2025 Soil 21/01/2025 22/01/2025 <50 <100 <100 <50 <50 <50 <50

79

82

82

%

96

Surrogate o-Terphenyl

74

Our Reference		370762-17	370762-18	370762-21	370762-23	370762-24
Your Reference	UNITS	BH215	BH216	BH216	BH217	BH217
Depth		0.2-0.3	0-0.1	1-1.3	0-0.1	0.2-0.3
Date Sampled		15/01/2025	15/01/2025	15/01/2025	15/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	•	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
TRH C10 - C14	mg/kg	<50	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	100	<100	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	100	<50	<50	<50	<50
Surrogate o-Terphenyl	%	90	89	87	73	61

SVIRH (C10-C40) IN SOIL					
Our Reference		370762-26	370762-28	370762-30	370762-32
Your Reference	UNITS	BH219	BH219	SDUP201	TB-S201
Depth		0-0.1	0.5-0.6	-	-
Date Sampled		15/01/2025	15/01/2025	15/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50
TRH >C10 -C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C16 -C34	mg/kg	100	<100	<100	<100
TRH >C34 -C40	mg/kg	130	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	230	<50	<50	<50
Surrogate o-Terphenyl	%	78	87	90	91

PAHs in Soil						
Our Reference		370762-1	370762-2	370762-4	370762-6	370762-8
Your Reference	UNITS	BH203	BH203	BH207	BH210	BH210
Depth		0.1-0.2	0.3-0.4	0-0.1	0.05-0.1	0.55-0.6
Date Sampled		15/01/2025	15/01/2025	16/01/2025	16/01/2025	16/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.3	0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	1.5	0.5	<0.1	<0.1	0.2
Anthracene	mg/kg	0.3	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	1.6	0.8	<0.1	<0.1	0.5
Pyrene	mg/kg	1.6	0.8	<0.1	<0.1	0.5
Benzo(a)anthracene	mg/kg	0.7	0.4	<0.1	<0.1	0.2
Chrysene	mg/kg	0.8	0.4	<0.1	<0.1	0.3
Benzo(b,j+k)fluoranthene	mg/kg	1	0.7	<0.2	<0.2	0.5
Benzo(a)pyrene	mg/kg	0.74	0.5	0.06	<0.05	0.4
Indeno(1,2,3-c,d)pyrene	mg/kg	0.3	0.3	<0.1	<0.1	0.2
Dibenzo(a,h)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.5	0.3	<0.1	<0.1	0.3
Total +ve PAH's	mg/kg	9.5	5.0	0.06	<0.05	3.2
Benzo(a)pyrene TEQ calc (zero)	mg/kg	1.1	0.6	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	1.1	0.7	<0.5	<0.5	0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	1.1	0.7	<0.5	<0.5	0.6
Surrogate p-Terphenyl-d14	%	99	115	104	104	114

PAHs in Soil						
Our Reference		370762-10	370762-11	370762-14	370762-15	370762-16
Your Reference	UNITS	BH211	BH212	BH214	BH214	BH215
Depth		0.2-0.3	0.1-0.15	0.2-0.3	0.3-0.4	0-0.1
Date Sampled		16/01/2025	16/01/2025	16/01/2025	16/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	1.0	<0.1	<0.1	0.5	0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.3	<0.1	<0.1	0.2	<0.1
Phenanthrene	mg/kg	4.5	0.4	0.1	3.1	0.5
Anthracene	mg/kg	1.3	0.1	<0.1	0.8	0.1
Fluoranthene	mg/kg	6.0	0.8	0.2	4.1	0.6
Pyrene	mg/kg	6.1	0.8	0.2	4.1	0.6
Benzo(a)anthracene	mg/kg	2.8	0.4	0.1	1.9	0.3
Chrysene	mg/kg	2.9	0.4	0.1	1.7	0.3
Benzo(b,j+k)fluoranthene	mg/kg	4.5	0.7	0.2	2.7	0.5
Benzo(a)pyrene	mg/kg	3.3	0.4	0.2	1.9	0.3
Indeno(1,2,3-c,d)pyrene	mg/kg	1.6	0.3	0.1	0.9	0.2
Dibenzo(a,h)anthracene	mg/kg	0.4	<0.1	<0.1	0.2	<0.1
Benzo(g,h,i)perylene	mg/kg	2.0	0.3	0.1	1.1	0.2
Total +ve PAH's	mg/kg	37	4.6	1.4	23	3.6
Benzo(a)pyrene TEQ calc (zero)	mg/kg	4.7	0.6	<0.5	2.7	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	4.7	0.6	<0.5	2.7	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	4.7	0.7	<0.5	2.7	0.5
Surrogate p-Terphenyl-d14	%	102	103	103	63	97

PAHs in Soil						
Our Reference		370762-17	370762-18	370762-21	370762-23	370762-24
Your Reference	UNITS	BH215	BH216	BH216	BH217	BH217
Depth		0.2-0.3	0-0.1	1-1.3	0-0.1	0.2-0.3
Date Sampled		15/01/2025	15/01/2025	15/01/2025	15/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.4	<0.1	<0.1	<0.1	0.6
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2
Fluoranthene	mg/kg	0.7	<0.1	<0.1	0.2	0.9
Pyrene	mg/kg	0.7	<0.1	<0.1	0.2	0.8
Benzo(a)anthracene	mg/kg	0.3	<0.1	<0.1	0.1	0.4
Chrysene	mg/kg	0.3	<0.1	<0.1	0.1	0.4
Benzo(b,j+k)fluoranthene	mg/kg	0.6	<0.2	<0.2	<0.2	0.7
Benzo(a)pyrene	mg/kg	0.4	<0.05	<0.05	0.1	0.4
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2	<0.1	<0.1	0.1	0.2
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.3	<0.1	<0.1	0.1	0.3
Total +ve PAH's	mg/kg	4.3	<0.05	<0.05	0.95	5.0
Benzo(a)pyrene TEQ calc (zero)	mg/kg	0.5	<0.5	<0.5	<0.5	0.6
Benzo(a)pyrene TEQ calc(half)	mg/kg	0.6	<0.5	<0.5	<0.5	0.6
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	0.6	<0.5	<0.5	<0.5	0.7
Surrogate p-Terphenyl-d14	%	113	98	113	98	61

PAHs in Soil					
Our Reference		370762-26	370762-28	370762-30	370762-32
Your Reference	UNITS	BH219	BH219	SDUP201	TB-S201
Depth		0-0.1	0.5-0.6	-	-
Date Sampled		15/01/2025	15/01/2025	15/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.3	0.1	<0.1
Anthracene	mg/kg	<0.1	0.2	<0.1	<0.1
Fluoranthene	mg/kg	0.2	0.4	0.2	<0.1
Pyrene	mg/kg	0.3	0.4	0.2	<0.1
Benzo(a)anthracene	mg/kg	0.1	0.2	0.1	<0.1
Chrysene	mg/kg	0.1	0.2	0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.3	0.4	0.2	<0.2
Benzo(a)pyrene	mg/kg	0.2	0.2	0.2	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.2	0.2	0.1	<0.1
Total +ve PAH's	mg/kg	1.5	2.7	1.4	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	98	98	98	117

Organochlorine Pesticides in soil					_	
Our Reference		370762-1	370762-4	370762-6	370762-10	370762-11
Your Reference	UNITS	BH203	BH207	BH210	BH211	BH212
Depth		0.1-0.2	0-0.1	0.05-0.1	0.2-0.3	0.1-0.15
Date Sampled		15/01/2025	16/01/2025	16/01/2025	16/01/2025	16/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total Positive Aldrin+Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	117	61	64	107	61

Organochlorine Pesticides in soil						
Our Reference		370762-14	370762-16	370762-18	370762-23	370762-26
Your Reference	UNITS	BH214	BH215	BH216	BH217	BH219
Depth		0.2-0.3	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		16/01/2025	15/01/2025	15/01/2025	15/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total Positive Aldrin+Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	61	61	104	64	62

Organochlorine Pesticides in soil			
Our Reference		370762-28	370762-30
Your Reference	UNITS	BH219	SDUP201
Depth		0.5-0.6	-
Date Sampled		15/01/2025	15/01/2025
Type of sample		Soil	Soil
Date extracted	-	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025
alpha-BHC	mg/kg	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Total Positive Aldrin+Dieldrin	mg/kg	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	106	109

Organophosphorus Pesticides in Soil						
Our Reference		370762-1	370762-4	370762-6	370762-10	370762-11
Your Reference	UNITS	BH203	BH207	BH210	BH211	BH212
Depth		0.1-0.2	0-0.1	0.05-0.1	0.2-0.3	0.1-0.15
Date Sampled		15/01/2025	16/01/2025	16/01/2025	16/01/2025	16/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	117	61	64	107	61

Organophosphorus Pesticides in Soil						
Our Reference		370762-14	370762-16	370762-18	370762-23	370762-26
Your Reference	UNITS	BH214	BH215	BH216	BH217	BH219
Depth		0.2-0.3	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		16/01/2025	15/01/2025	15/01/2025	15/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	125	121	104	121	62

Organophosphorus Pesticides in Soil			
Our Reference		370762-28	370762-30
Your Reference	UNITS	BH219	SDUP201
Depth		0.5-0.6	-
Date Sampled		15/01/2025	15/01/2025
Type of sample		Soil	Soil
Date extracted	-	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025
Dichlorvos	mg/kg	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	106	109

PCBs in Soil						
Our Reference		370762-1	370762-4	370762-6	370762-10	370762-11
Your Reference	UNITS	BH203	BH207	BH210	BH211	BH212
Depth		0.1-0.2	0-0.1	0.05-0.1	0.2-0.3	0.1-0.15
Date Sampled		15/01/2025	16/01/2025	16/01/2025	16/01/2025	16/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	113	62	64	108	63

PCBs in Soil						
Our Reference		370762-14	370762-16	370762-18	370762-23	370762-26
Your Reference	UNITS	BH214	BH215	BH216	BH217	BH219
Depth		0.2-0.3	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		16/01/2025	15/01/2025	15/01/2025	15/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	61	63	107	60	64

PCBs in Soil			
Our Reference		370762-28	370762-30
Your Reference	UNITS	BH219	SDUP201
Depth		0.5-0.6	-
Date Sampled		15/01/2025	15/01/2025
Type of sample		Soil	Soil
Date extracted	-	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	106	109

Acid Extractable metals in soil						
Our Reference		370762-1	370762-2	370762-4	370762-6	370762-8
Your Reference	UNITS	BH203	BH203	BH207	BH210	BH210
Depth		0.1-0.2	0.3-0.4	0-0.1	0.05-0.1	0.55-0.6
Date Sampled		15/01/2025	15/01/2025	16/01/2025	16/01/2025	16/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Arsenic	mg/kg	<4	4	<4	<4	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	17	12	15	5	10
Copper	mg/kg	89	20	23	50	18
Lead	mg/kg	32	120	11	9	140
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	0.8
Nickel	mg/kg	26	4	8	29	4
Zinc	mg/kg	54	84	44	25	250

Acid Extractable metals in soil						
Our Reference		370762-10	370762-11	370762-14	370762-15	370762-16
Your Reference	UNITS	BH211	BH212	BH214	BH214	BH215
Depth		0.2-0.3	0.1-0.15	0.2-0.3	0.3-0.4	0-0.1
Date Sampled		16/01/2025	16/01/2025	16/01/2025	16/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Arsenic	mg/kg	4	5	6	<4	<4
Cadmium	mg/kg	0.5	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	12	12	12	7	12
Copper	mg/kg	32	35	24	260	17
Lead	mg/kg	250	29	92	100	25
Mercury	mg/kg	0.4	<0.1	0.1	<0.1	<0.1
Nickel	mg/kg	7	33	3	2	8
Zinc	mg/kg	400	47	73	83	60

Acid Extractable metals in soil						
Our Reference		370762-17	370762-18	370762-21	370762-23	370762-24
Your Reference	UNITS	BH215	BH216	BH216	BH217	BH217
Depth		0.2-0.3	0-0.1	1-1.3	0-0.1	0.2-0.3
Date Sampled		15/01/2025	15/01/2025	15/01/2025	15/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	12	11	15	15	12
Copper	mg/kg	9	16	<1	21	25
Lead	mg/kg	65	9	4	18	170
Mercury	mg/kg	0.1	<0.1	<0.1	<0.1	0.1
Nickel	mg/kg	4	5	1	8	7
Zinc	mg/kg	140	35	16	60	450

Acid Extractable metals in soil						
Our Reference		370762-26	370762-28	370762-30	370762-32	370762-34
Your Reference	UNITS	BH219	BH219	SDUP201	TB-S201	BH203 - [TRIPLICATE]
Depth		0-0.1	0.5-0.6	-	-	0.1-0.2
Date Sampled		15/01/2025	15/01/2025	15/01/2025	15/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	13	9	13	<1	18
Copper	mg/kg	27	7	23	<1	67
Lead	mg/kg	13	23	20	<1	81
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	9	2	14	<1	17
Zinc	mg/kg	44	19	50	<1	87

Acid Extractable metals in soil		
Our Reference		370762-35
Your Reference	UNITS	BH211 - [TRIPLICATE]
Depth		0.2-0.3
Date Sampled		16/01/2025
Type of sample		Soil
Date prepared	-	21/01/2025
Date analysed	-	21/01/2025
Arsenic	mg/kg	<4
Cadmium	mg/kg	0.5
Chromium	mg/kg	11
Copper	mg/kg	32
Lead	mg/kg	290
Mercury	mg/kg	0.4
Nickel	mg/kg	6
Zinc	mg/kg	400

Moisture			-			
Our Reference		370762-1	370762-2	370762-4	370762-6	370762-8
Your Reference	UNITS	BH203	BH203	BH207	BH210	BH210
Depth		0.1-0.2	0.3-0.4	0-0.1	0.05-0.1	0.55-0.6
Date Sampled		15/01/2025	15/01/2025	16/01/2025	16/01/2025	16/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
Moisture	%	7.0	15	11	19	22
Moisture						
Our Reference		370762-10	370762-11	370762-14	370762-15	370762-16
Your Reference	UNITS	BH211	BH212	BH214	BH214	BH215
Depth		0.2-0.3	0.1-0.15	0.2-0.3	0.3-0.4	0-0.1
Date Sampled		16/01/2025	16/01/2025	16/01/2025	16/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
Moisture	%	16	24	13	15	13
Moisture						
Our Reference		370762-17	370762-18	370762-21	370762-23	370762-24
Your Reference	UNITS	BH215	BH216	BH216	BH217	BH217
Depth		0.2-0.3	0-0.1	1-1.3	0-0.1	0.2-0.3
Date Sampled		15/01/2025	15/01/2025	15/01/2025	15/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	21/01/2025
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	22/01/2025
Moisture	%	12	11	14	15	18
Moisture						
Our Reference		370762-26	370762-28	370762-30	370762-32	
Your Reference	UNITS	BH219	BH219	SDUP201	TB-S201	
Depth		0-0.1	0.5-0.6	-	-	
Date Sampled		15/01/2025	15/01/2025	15/01/2025	15/01/2025	
Type of sample		Soil	Soil	Soil	Soil	
Date prepared	-	21/01/2025	21/01/2025	21/01/2025	21/01/2025	
Date analysed	-	22/01/2025	22/01/2025	22/01/2025	22/01/2025	
Moisture	%	12	11	16	<0.1	

Asbestos ID - soils NEPM - ASB-001						
Our Reference		370762-1	370762-4	370762-6	370762-10	370762-11
Your Reference	UNITS	BH203	BH207	BH210	BH211	BH212
Depth		0.1-0.2	0-0.1	0.05-0.1	0.2-0.3	0.1-0.15
Date Sampled		15/01/2025	16/01/2025	16/01/2025	16/01/2025	16/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	23/01/2025	23/01/2025	23/01/2025	23/01/2025	23/01/2025
Sample mass tested	g	828.21	775.06	237	407.35	717.73
Sample Description	-	Black fine-grained soil & rocks	Brown fine- grained soil & rocks	Black coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Black aggregate
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	Chrysotile	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	0.0001	_	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos comments	-	YES	Nil	Nil	Nil	Nil

Asbestos ID - soils NEPM - ASB-001						
Our Reference		370762-14	370762-16	370762-18	370762-23	370762-26
Your Reference	UNITS	BH214	BH215	BH216	BH217	BH219
Depth		0.2-0.3	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		16/01/2025	15/01/2025	15/01/2025	15/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	23/01/2025	23/01/2025	23/01/2025	23/01/2025	23/01/2025
Sample mass tested	g	478.05	926.09	939.21	869.43	920.43
Sample Description	-	Brown coarse- grained soil & rocks				
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres				
		detected	detected	detected	detected	detected
Trace Analysis	-	No asbestos detected				
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	-	_	-	-	_
FA and AF Estimation*	g	-	_	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos comments	-	Nil	Nil	Nil	Nil	Nil

Asbestos ID - soils NEPM - ASB-001		
Our Reference		370762-28
Your Reference	UNITS	BH219
Depth		0.5-0.6
Date Sampled		15/01/2025
Type of sample		Soil
Date analysed	-	23/01/2025
Sample mass tested	g	808.71
Sample Description	-	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected
ACM >7mm Estimation*	g	_
FA and AF Estimation*	g	-
ACM >7mm Estimation*	%(w/w)	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001
Asbestos comments	-	Nil

vTRH(C6-C10)/BTEXN in Water		
Our Reference		370762-33
Your Reference	UNITS	FR-HA-201
Depth		-
Date Sampled		16/01/2025
Type of sample		Soil
Date extracted	-	21/01/2025
Date analysed	-	22/01/2025
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	92
Surrogate Toluene-d8	%	88
Surrogate 4-Bromofluorobenzene	%	89

svTRH (C10-C40) in Water		
Our Reference		370762-33
Your Reference	UNITS	FR-HA-201
Depth		-
Date Sampled		16/01/2025
Type of sample		Soil
Date extracted	-	21/01/2025
Date analysed	-	21/01/2025
TRH C ₁₀ - C ₁₄	µg/L	<50
TRH C ₁₅ - C ₂₈	µg/L	180
TRH C ₂₉ - C ₃₆	μg/L	<100
Total +ve TRH (C10-C36)	µg/L	180
TRH >C10 - C16	µg/L	180
TRH >C10 - C16 less Naphthalene (F2)	µg/L	180
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Total +ve TRH (>C10-C40)	μg/L	180
Surrogate o-Terphenyl	%	76

Metals in Waters - Acid extractable		
Our Reference		370762-33
Your Reference	UNITS	FR-HA-201
Depth		-
Date Sampled		16/01/2025
Type of sample		Soil
Date prepared	-	21/01/2025
Date analysed	-	21/01/2025
Arsenic - Total	mg/L	<0.05
Cadmium - Total	mg/L	<0.01
Chromium - Total	mg/L	<0.01
Copper - Total	mg/L	<0.01
Lead - Total	mg/L	<0.03
Mercury - Total	mg/L	<0.0005
Nickel - Total	mg/L	<0.02
Zinc - Total	mg/L	<0.02

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF relative to the sample mass tested)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370762-4
Date extracted	-			21/01/2025	1	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Date analysed	-			22/01/2025	1	22/01/2025	22/01/2025		22/01/2025	22/01/2025
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	85	81
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	85	81
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	91	87
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	86	83
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	87	81
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	81	76
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	83	78
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	98	1	74	75	1	82	74

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil		Duplicate Sp					covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	370762-28
Date extracted	-			[NT]	10	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Date analysed	-			[NT]	10	22/01/2025	22/01/2025		22/01/2025	22/01/2025
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	10	<25	<25	0	104	71
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	10	<25	<25	0	104	71
Benzene	mg/kg	0.2	Org-023	[NT]	10	<0.2	<0.2	0	111	76
Toluene	mg/kg	0.5	Org-023	[NT]	10	<0.5	<0.5	0	106	72
Ethylbenzene	mg/kg	1	Org-023	[NT]	10	<1	<1	0	105	72
m+p-xylene	mg/kg	2	Org-023	[NT]	10	<2	<2	0	99	67
o-Xylene	mg/kg	1	Org-023	[NT]	10	<1	<1	0	102	69
Naphthalene	mg/kg	1	Org-023	[NT]	10	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	10	74	82	10	96	68

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	26	21/01/2025	21/01/2025			[NT]
Date analysed	-			[NT]	26	22/01/2025	22/01/2025			[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	26	<25	<25	0		[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	26	<25	<25	0		[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	26	<0.2	<0.2	0		[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	26	<0.5	<0.5	0		[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	26	<2	<2	0		[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	26	<1	<1	0		[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	26	81	77	5		[NT]

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370762-4
Date extracted	-			23/01/2025	1	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Date analysed	-			23/01/2025	1	22/01/2025	22/01/2025		21/01/2025	21/01/2025
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	108	106
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	220	180	20	103	108
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	430	400	7	100	109
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	108	106
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	460	400	14	103	108
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	680	610	11	100	109
Surrogate o-Terphenyl	%		Org-020	77	1	98	93	5	95	93

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Duplicate Sp				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	370762-28	
Date extracted	-			[NT]	10	21/01/2025	21/01/2025		21/01/2025	21/01/2025	
Date analysed	-			[NT]	10	21/01/2025	21/01/2025		21/01/2025	22/01/2025	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	10	<50	<50	0	94	96	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	10	<100	100	0	84	92	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	10	<100	<100	0	100	113	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	10	<50	<50	0	94	96	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	10	120	140	15	84	92	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	10	<100	<100	0	100	113	
Surrogate o-Terphenyl	%		Org-020	[NT]	10	96	97	1	87	87	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	26	21/01/2025	21/01/2025			[NT]
Date analysed	-			[NT]	26	22/01/2025	22/01/2025			[NT]
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	26	<50	<50	0		[NT]
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	26	<100	<100	0		[NT]
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	26	<100	<100	0		[NT]
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	26	<50	<50	0		[NT]
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	26	100	<100	0		[NT]
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	26	130	<100	26		[NT]
Surrogate o-Terphenyl	%		Org-020	[NT]	26	78	72	8		[NT]

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370762-4
Date extracted	-			21/01/2025	1	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Date analysed	-			22/01/2025	1	22/01/2025	22/01/2025		22/01/2025	22/01/2025
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	74
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	0.3	0.2	40	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	78
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	77
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	1.5	0.7	73	92	81
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.3	0.2	40	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	1.6	1.0	46	86	84
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	1.6	1.1	37	92	87
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.7	0.5	33	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	0.8	0.5	46	86	84
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	1	0.8	22	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	0.74	0.58	24	84	89
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	0.3	0.3	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	0.5	0.4	22	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	107	1	99	100	1	118	95

QUALIT	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	370762-28
Date extracted	-			[NT]	10	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Date analysed	-			[NT]	10	22/01/2025	22/01/2025		22/01/2025	22/01/2025
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	10	0.1	0.2	67	78	72
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	10	1.0	1.2	18	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	80	76
Fluorene	mg/kg	0.1	Org-022/025	[NT]	10	0.3	0.3	0	80	72
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	10	4.5	4.9	9	80	69
Anthracene	mg/kg	0.1	Org-022/025	[NT]	10	1.3	1.4	7	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	10	6.0	6.5	8	80	66
Pyrene	mg/kg	0.1	Org-022/025	[NT]	10	6.1	6.5	6	78	67
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	10	2.8	3.1	10	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	10	2.9	3.1	7	82	73
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	10	4.5	4.9	9	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	10	3.3	3.5	6	82	72
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	10	1.6	1.7	6	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	10	0.4	0.5	22	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	10	2.0	2.1	5	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	10	102	100	2	97	95

QUALI	TY CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	26	21/01/2025	21/01/2025			[NT]
Date analysed	-			[NT]	26	22/01/2025	22/01/2025			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	26	0.2	<0.1	67		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	26	0.3	<0.1	100		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	26	0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	26	0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	26	0.3	<0.2	40		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	26	0.2	<0.05	120		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	26	0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	26	0.2	<0.1	67		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	26	98	101	3		[NT]

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370762-4
Date extracted	-			21/01/2025	1	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Date analysed	-			22/01/2025	1	22/01/2025	22/01/2025		22/01/2025	22/01/2025
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72	68
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72	64
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	68	61
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	74	83
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	96
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	80	89
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	99
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	78	88
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	77	1	117	115	2	106	95

QUALITY CONTR	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	370762-28
Date extracted	-			[NT]	10	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Date analysed	-			[NT]	10	22/01/2025	22/01/2025		22/01/2025	22/01/2025
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	90	66
НСВ	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	82	60
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	92	80
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	84	74
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	98	82
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	92	80
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	95	82
Endrin	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	86	[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	90	74
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	[NT]	10	107	104	3	119	99

QUALITY CON	TROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	26	21/01/2025	21/01/2025			[NT]
Date analysed	-			[NT]	26	22/01/2025	22/01/2025			[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Mirex	mg/kg	0.1	Org-022/025	[NT]	26	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	[NT]	26	62	63	2		[NT]

QUALITY CONTR	OL: Organoph	osphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370762-4
Date extracted	-			21/01/2025	1	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Date analysed	-			22/01/2025	1	22/01/2025	22/01/2025		22/01/2025	22/01/2025
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72	61
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	76	84
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	107
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	68	93
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	82	89
Fenthion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	101
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	90	108
Phosalone	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	77	1	117	115	2	106	95

QUALITY CONTR	OL: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	370762-28
Date extracted	-				10	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Date analysed	-				10	22/01/2025	22/01/2025		22/01/2025	22/01/2025
Dichlorvos	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	87	70
Mevinphos	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Phorate	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Dimethoate	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Disulfoton	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	92	74
Fenitrothion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	100	92
Malathion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	94	80
Chlorpyriphos	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	96	78
Fenthion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Parathion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	94	88
Bromophos-ethyl	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Methidathion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	100	90
Phosalone	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Coumaphos	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		10	107	104	3	119	99

QUALITY CONTR	ROL: Organopl	nosphorus	Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				26	21/01/2025	21/01/2025			[NT]
Date analysed	-				26	22/01/2025	22/01/2025			[NT]
Dichlorvos	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Mevinphos	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Phorate	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Dimethoate	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Diazinon	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Disulfoton	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Parathion-Methyl	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Ronnel	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Fenitrothion	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Malathion	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Chlorpyriphos	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Fenthion	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Parathion	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Bromophos-ethyl	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Methidathion	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Fenamiphos	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Ethion	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Phosalone	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Coumaphos	mg/kg	0.1	Org-022/025		26	<0.1	<0.1	0		[NT]
Surrogate 4-Chloro-3-NBTF	%		Org-022/025		26	62	63	2		[NT]

QUALIT	Y CONTRO	L: PCBs	in Soil			Duj	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370762-4
Date extracted	-			21/01/2025	1	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Date analysed	-			22/01/2025	1	22/01/2025	22/01/2025		22/01/2025	22/01/2025
Aroclor 1016	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	78	86
Aroclor 1260	mg/kg	0.1	Org-021/022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	105	1	113	112	1	100	95

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	370762-28
Date extracted	-			[NT]	10	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Date analysed	-			[NT]	10	22/01/2025	22/01/2025		22/01/2025	22/01/2025
Aroclor 1016	mg/kg	0.1	Org-021/022/025	[NT]	10	<0.1	<0.1	0		[NT]
Aroclor 1221	mg/kg	0.1	Org-021/022/025	[NT]	10	<0.1	<0.1	0		[NT]
Aroclor 1232	mg/kg	0.1	Org-021/022/025	[NT]	10	<0.1	<0.1	0		[NT]
Aroclor 1242	mg/kg	0.1	Org-021/022/025	[NT]	10	<0.1	<0.1	0		[NT]
Aroclor 1248	mg/kg	0.1	Org-021/022/025	[NT]	10	<0.1	<0.1	0		[NT]
Aroclor 1254	mg/kg	0.1	Org-021/022/025	[NT]	10	<0.1	<0.1	0	90	60
Aroclor 1260	mg/kg	0.1	Org-021/022/025	[NT]	10	<0.1	<0.1	0		[NT]
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	[NT]	10	108	106	2	112	96

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				26	21/01/2025	21/01/2025			
Date analysed	-				26	22/01/2025	22/01/2025			
Aroclor 1016	mg/kg	0.1	Org-021/022/025		26	<0.1	<0.1	0		
Aroclor 1221	mg/kg	0.1	Org-021/022/025		26	<0.1	<0.1	0		
Aroclor 1232	mg/kg	0.1	Org-021/022/025		26	<0.1	<0.1	0		
Aroclor 1242	mg/kg	0.1	Org-021/022/025		26	<0.1	<0.1	0		
Aroclor 1248	mg/kg	0.1	Org-021/022/025		26	<0.1	<0.1	0		
Aroclor 1254	mg/kg	0.1	Org-021/022/025		26	<0.1	<0.1	0		
Aroclor 1260	mg/kg	0.1	Org-021/022/025		26	<0.1	<0.1	0		
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	[NT]	26	64	65	2	[NT]	[NT]

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	370762-4
Date prepared	-			21/01/2025	1	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Date analysed	-			21/01/2025	1	21/01/2025	21/01/2025		21/01/2025	21/01/2025
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	103	98
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	93	80
Chromium	mg/kg	1	Metals-020	<1	1	17	18	6	99	93
Copper	mg/kg	1	Metals-020	<1	1	89	74	18	99	98
Lead	mg/kg	1	Metals-020	<1	1	32	67	71	98	87
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	125	98
Nickel	mg/kg	1	Metals-020	<1	1	26	22	17	101	89
Zinc	mg/kg	1	Metals-020	<1	1	54	79	38	101	92

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil		Duplicate				Spike Re	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	370762-28	
Date prepared	-			[NT]	10	21/01/2025	21/01/2025			21/01/2025	
Date analysed	-			[NT]	10	21/01/2025	21/01/2025			21/01/2025	
Arsenic	mg/kg	4	Metals-020	[NT]	10	4	10	86		97	
Cadmium	mg/kg	0.4	Metals-020	[NT]	10	0.5	0.5	0		86	
Chromium	mg/kg	1	Metals-020	[NT]	10	12	13	8		92	
Copper	mg/kg	1	Metals-020	[NT]	10	32	36	12		98	
Lead	mg/kg	1	Metals-020	[NT]	10	250	240	4		92	
Mercury	mg/kg	0.1	Metals-021	[NT]	10	0.4	0.3	29		100	
Nickel	mg/kg	1	Metals-020	[NT]	10	7	15	73		94	
Zinc	mg/kg	1	Metals-020	[NT]	10	400	400	0	[NT]	92	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	26	21/01/2025	21/01/2025		[NT]	
Date analysed	-			[NT]	26	21/01/2025	21/01/2025		[NT]	
Arsenic	mg/kg	4	Metals-020	[NT]	26	<4	<4	0	[NT]	
Cadmium	mg/kg	0.4	Metals-020	[NT]	26	<0.4	<0.4	0	[NT]	
Chromium	mg/kg	1	Metals-020	[NT]	26	13	15	14	[NT]	
Copper	mg/kg	1	Metals-020	[NT]	26	27	21	25	[NT]	
Lead	mg/kg	1	Metals-020	[NT]	26	13	12	8	[NT]	
Mercury	mg/kg	0.1	Metals-021	[NT]	26	<0.1	<0.1	0	[NT]	
Nickel	mg/kg	1	Metals-020	[NT]	26	9	7	25	[NT]	
Zinc	mg/kg	1	Metals-020	[NT]	26	44	45	2	[NT]	[NT]

QUALITY CONT	ROL: vTRH(C6-C10)/E	3TEXN in Water			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			21/01/2025	[NT]		[NT]	[NT]	21/01/2025	
Date analysed	-			22/01/2025	[NT]		[NT]	[NT]	22/01/2025	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	85	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	85	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	94	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	80	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	84	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	84	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	82	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	90	[NT]		[NT]	[NT]	91	
Surrogate Toluene-d8	%		Org-023	87	[NT]		[NT]	[NT]	87	
Surrogate 4-Bromofluorobenzene	%		Org-023	89	[NT]		[NT]	[NT]	92	

QUALITY CON	TROL: svTF	RH (C10-0	C40) in Water		Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			21/01/2025	[NT]		[NT]	[NT]	21/01/2025	
Date analysed	-			21/01/2025	[NT]		[NT]	[NT]	21/01/2025	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	97	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	95	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	86	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	[NT]		[NT]	[NT]	97	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	95	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	[NT]		[NT]	[NT]	86	
Surrogate o-Terphenyl	%		Org-020	81	[NT]	[NT]	[NT]	[NT]	96	[NT]

QUALITY CONTRO	QUALITY CONTROL: Metals in Waters - Acid extractable						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			21/01/2025	[NT]		[NT]	[NT]	21/01/2025	
Date analysed	-			21/01/2025	[NT]		[NT]	[NT]	21/01/2025	
Arsenic - Total	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	99	
Cadmium - Total	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	90	
Chromium - Total	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	94	
Copper - Total	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	95	
Lead - Total	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	92	
Mercury - Total	mg/L	0.0005	Metals-021	<0.0005	[NT]		[NT]	[NT]	118	
Nickel - Total	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	96	
Zinc - Total	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	99	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	N Definitione
Quality Contro	
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

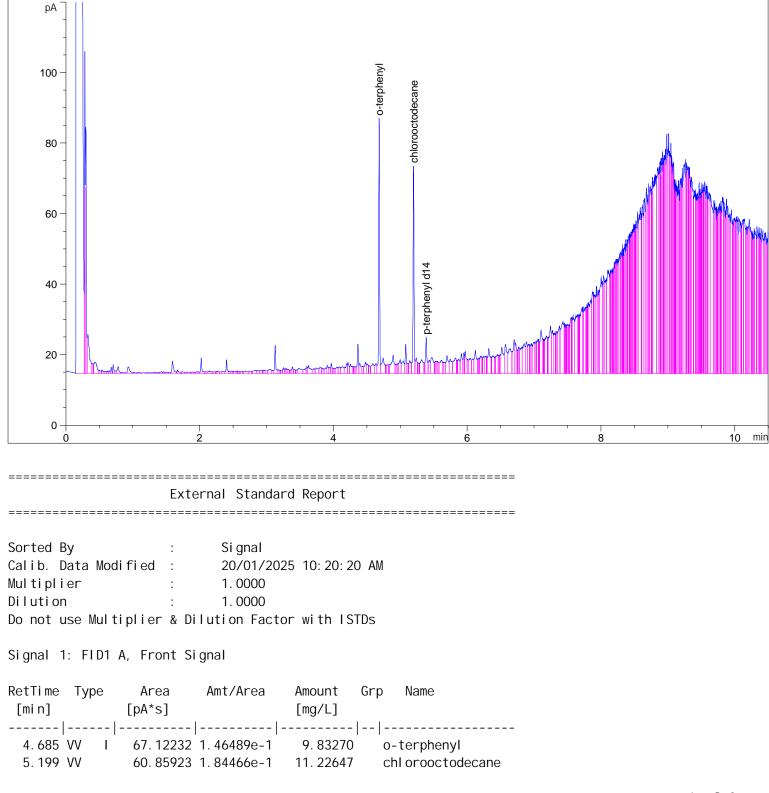
Acid Extractable Metals in Soil:

- The laboratory RPD acceptance criteria has been exceeded for 370762-1 for Pb. Therefore a triplicate result has been issued as laboratory sample number 370762-34.

- The laboratory RPD acceptance criteria has been exceeded for 370762-10 for Ni. Therefore a triplicate result has been issued as laboratory sample number 370762-35.

TRH Water(C10-C40) NEPM - The positive result in the blank/rinsate sample is due to a single peak with no hydrocarbon profile that is consistent with the use of plastic containers.

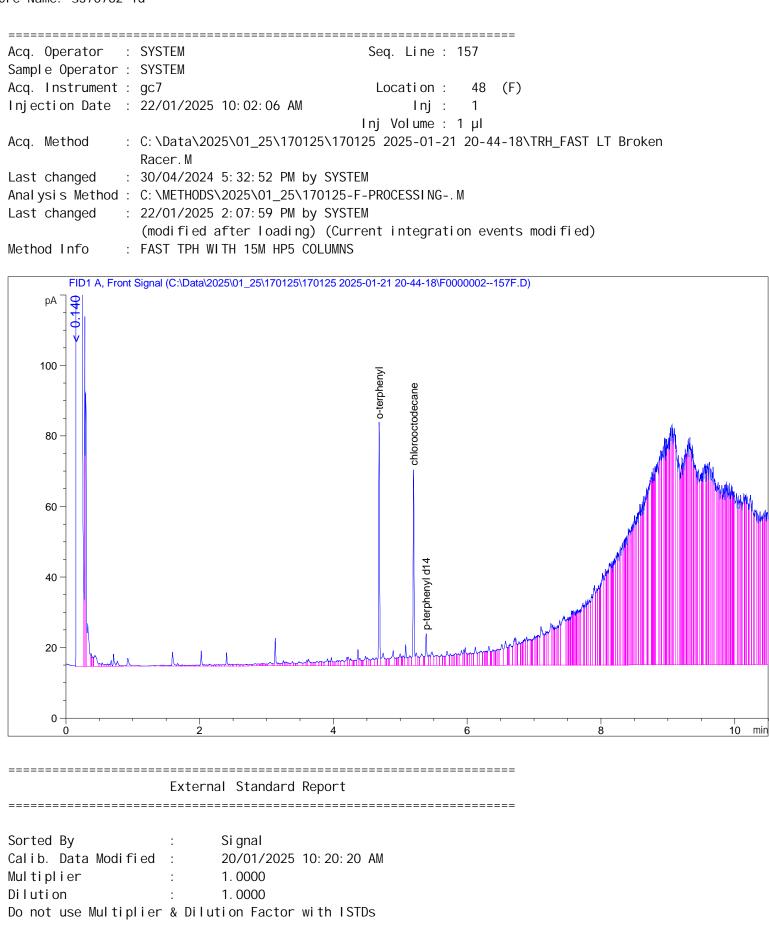
PAHs in Soil - The RPD for duplicate results is accepted due to the non homogenous nature of sample/s 370762-1,1d.


Asbestos-ID in soil: NEPM This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Factual description of asbestos identified in the soil samples: NEPM Sample 370762-1; Chrysotile asbestos identified in 0.0001g of loose fibre bundles

Note: All samples analysed as received. However, samples 370762-6 & 10 are below the minimum recommended 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

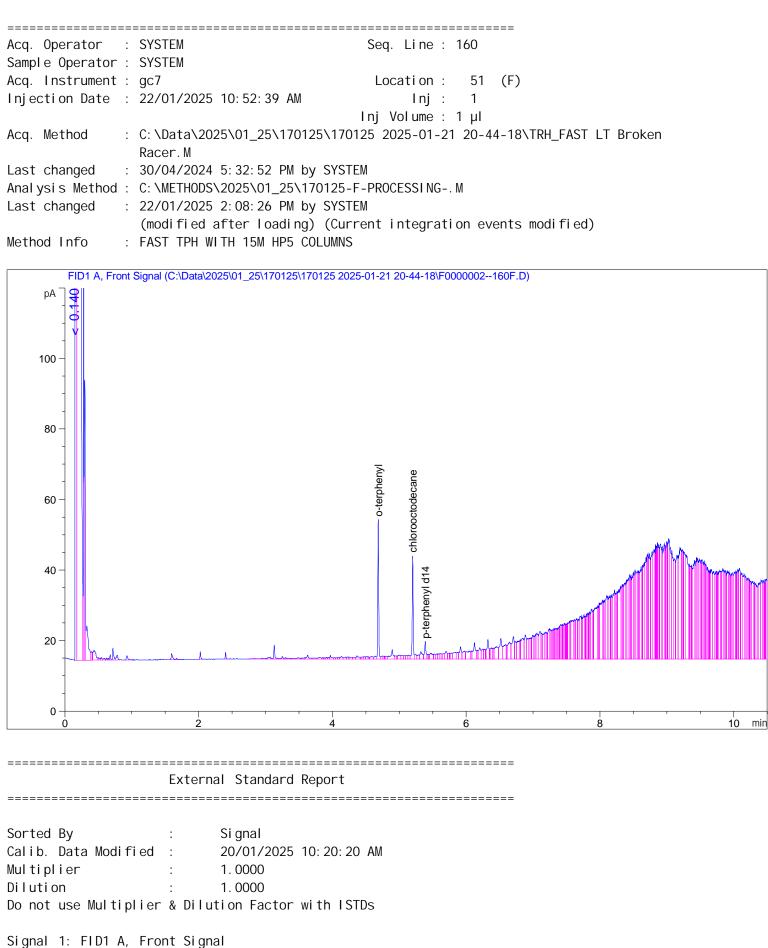
Data File C:\Data\2025\01_25\170125\170125 2025-01-21 20-44-18\F0000002--154F.D Sample Name: s370762-1


Acq. Operator :	SYSTEM S	Seq. Line : 154
Sample Operator :	SYSTEM	
Acq. Instrument :	gc7	Location: 45 (F)
Injection Date :	22/01/2025 9:11:35 AM	Inj: 1
	In	ıj Volume : 1 μl
Acq. Method :	C: \Data\2025\01_25\170125\170125	2025-01-21 20-44-18\TRH_FAST LT Broken
	Racer.M	
Last changed :	30/04/2024 5:32:52 PM by SYSTEM	
Analysis Method :	C: \METHODS\2025\01_25\170125-F-P	PROCESSING M
Last changed :	20/01/2025 10:31:20 AM by SYSTEM	1
Method Info :	FAST TPH WITH 15M HP5 COLUMNS	
FID1 A, Front S	Gignal (C:\Data\2025\01_25\170125\170125 2025-01	1-21 20-44-18\F0000002154F.D)

Data File C:\Data\2025\01_25\170125\170125 2025-01-21 20-44-18\F0000002--154F.D Sample Name: s370762-1

RetTime Type Area Amt/Area Amount Grp Name [min] [pA*s] [mg/L] 5.388 VV I 15.77178 1.58525e-1 2.50023 p-terphenyl d14 Totals : 23.55940 _____ _____ Summed Peaks Report _____ Signal 1: FID1 A, Front Signal Signal 1: FID1 A, Front Signal Start Time End Time Total Area Amount Name [min] [min] [pA*s] [mg/L] -----|-----|-----| TRH C10-C141. 1003. 31081. 9860712. 8066NEPM >C10-C161. 7003. 940118. 5312518. 5152TRH C15-C283. 3116. 740619. 60317110. 9647NEPM >C16-C343. 9407. 7601279. 85157229. 2086TRH C29-C366. 7408. 0751134. 18287215. 3087NEPM >C34-C407. 7608. 6801790. 72739339. 9445 Totals : 926.7484 _____ Final Summed Peaks Report _____ Signal 1: FID1 A, Front Signal Name Total Area Amount [pA*s] [mg/L] TRH C10-C14 81.98607 12.8066 NEPM >C10-C16 118.53125 18.5152 TRH C15-C28 619.60317 110.9647 NEPM >C16-C34 1279.85157 229.2086 TRH C29-C36 1134. 18287 215. 3087 NEPM >C34-C40 1790.72739 339.9445 o-terphenyl 67.12232 9.8327 chl orooctodecan 60. 85923 11. 2265 p-terphenyl d14 15.77178 2.5002 950.3078 Totals : *** End of Report ***

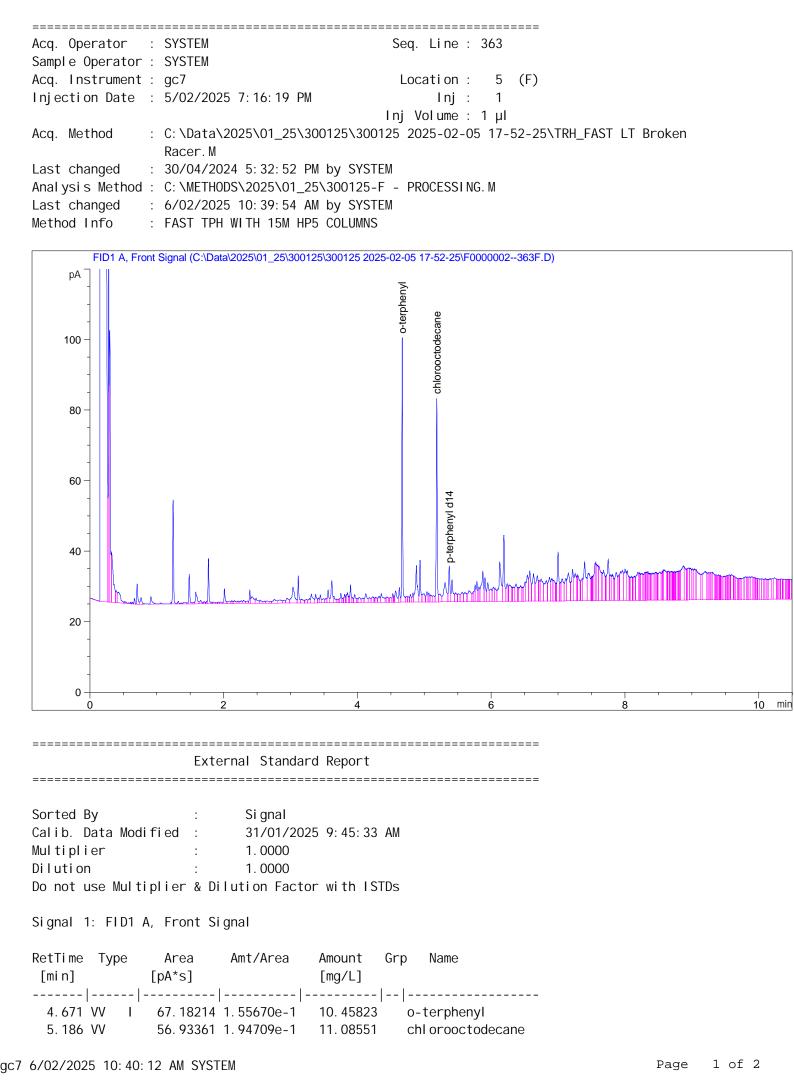
Data File C:\Data\2025\01_25\170125\170125 2025-01-21 20-44-18\F0000002--157F.D Sample Name: s370762-1d



Signal 1: FID1 A, Front Signal

Data File C:\Data\2025\01_25\170125\170125 2025-01-21 20-44-18\F0000002--157F.D Sample Name: s370762-1d

RetTime Type Amt/Area Amount Grp Area Name [min] [pA*s] [mg/L] 4.685 VV I 63.55804 1.46489e-1 9.31057 o-terphenyl 57.00222 1.84466e-1 10.51498 chlorooctodecane 5.199 VV 5.388 VV I 14.58711 1.58525e-1 2.31243 p-terphenyl d14 22.13798 Totals : _____ _____ Summed Peaks Report _____ Signal 1: FID1 A, Front Signal Signal 1: FID1 A, Front Signal Start Time End Time Total Area Amount Name [min] [min] [pA*s] [mg/L] 1. 100 3. 310 61. 37253 9. 5867 TRH C10-C14 1.700 3.940 89.43009 13.9694 NEPM >C10-C16 3.311 6.740 503.22773 90.1231 TRH C15-C28 3. 3113. 740503. 2277390. 12313. 9407. 7601108. 02000198. 43536. 7408. 0751042. 39394197. 88397. 7608. 6801587. 43852301. 3530 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 Totals : 811.3514 _____ Final Summed Peaks Report Signal 1: FID1 A, Front Signal Name Total Area Amount [pA*s] [mg/L] -----|-----|------| 61. 37253 9. 5867 TRH C10-C14 NEPM >C10-C16 89.43009 13.9694 503. 22773 90. 1231 TRH C15-C28 NEPM >C16-C34 1108.02000 198.4353 TRH C29-C36 1042. 39394 197. 8839 NEPM >C34-C40 1587.43852 301.3530 o-terphenyl 63.55804 9.3106 chl orooctodecan 57.00222 10.5150 p-terphenyl d14 14.58711 2.3124 Totals : 833.4893 *** End of Report ***


Data File C:\Data\2025\01_25\170125\170125 2025-01-21 20-44-18\F0000002--160F.D Sample Name: s370762-6

Data File C:\Data\2025\01_25\170125\170125 2025-01-21 20-44-18\F0000002--160F.D Sample Name: s370762-6

RetTime Type Amt/Area Amount Grp Area Name [min] [pA*s] [mg/L] 4.686 VV I 34.87232 1.46489e-1 5.10842 o-terphenyl 29. 51872 1. 84466e-1 5. 44521 chl orooctodecane 5.201 VV 5.389 VV I 7.70990 1.58525e-1 1.22221 p-terphenyl d14 11.77584 Totals : _____ _____ Summed Peaks Report _____ Signal 1: FID1 A, Front Signal Signal 1: FID1 A, Front Signal Start Time End Time Total Area Amount Name [min] [min] [pA*s] [mg/L] 3. 310 1.100 17.04219 2.6621 TRH C10-C14 1.700 3.940 25.62096 4.0021 NEPM >C10-C16 3.311 6.740 284.39640 50.9326 TRH C15-C28 3. 3110. 740284. 3904050. 93203. 9407. 760783. 01909140. 23096. 7408. 075768. 84973145. 95547. 7608. 6801020. 31177193. 6919 NEPM >C16-C34 TRH C29-C36 NEPM >C34-C40 Totals : 537.4749 _____ Final Summed Peaks Report Signal 1: FID1 A, Front Signal Name Total Area Amount [pA*s] [mg/L] -----|-----|------|-------| 17.04219 2.6621 TRH C10-C14 NEPM >C10-C16 25. 62096 4.0021 TRH C15-C28284. 3964050. 9326NEPM >C16-C34783. 01909140. 2309 TRH C29-C36 768. 84973 145. 9554 NEPM >C34-C40 1020. 31177 193. 6919 o-terphenyl 34.87232 5.1084 chl orooctodecan 29.51872 5.4452 p-terphenyl d14 7.70990 1.2222 Totals : 549.2507 *** End of Report ***

Data File C:\Data\2025\01_25\300125\300125 2025-02-05 17-52-25\F0000002--363F.D Sample Name: s371803-9 rr

Data File C:\Data\2025\01_25\300125\300125 2025-02-05 17-52-25\F0000002--363F.D Sample Name: s371803-9 rr

RetTime Type Amt/Area Amount Grp Area Name [min] [pA*s] [mg/L] 5.373 VV I 14.82840 1.66082e-1 2.46273 p-terphenyl d14 Totals : 24.00646 _____ _____ Summed Peaks Report _____ Signal 1: FID1 A, Front Signal Signal 1: FID1 A, Front Signal Start Time End Time Total Area Amount Name [min] [min] [pA*s] [mg/L] -----|-----|-----|

 1. 100
 3. 310
 144. 53086
 23. 7266

 1. 700
 3. 940
 158. 89057
 26. 0840

 3. 311
 6. 740
 563. 18162
 106. 7280

 3. 940
 7. 760
 927. 04711
 175. 6838

 TRH C10-C14 NEPM >C10-C16 TRH C15-C28 NEPM >C16-C34 TRH C29-C366. 7408. 075563. 86379106. 5409NEPM >C34-C407. 7608. 680413. 1984178. 0730 Totals : 516.8363 _____ Final Summed Peaks Report _____ Signal 1: FID1 A, Front Signal Name Total Area Amount [pA*s] [mg/L] -----|-----|------| TRH C10-C14 144.53086 23.7266 NEPM >C10-C16 158.89057 26.0840 TRH C15-C28 563. 18162 106. 7280 NEPM >C16-C34 927.04711 175.6838 TRH C29-C36563. 86379106. 5409NEPM >C34-C40413. 1984178. 0730o-terphenyl67. 1821410. 4582 chl orooctodecan 56. 93361 11. 0855 p-terphenyl d14 14.82840 2.4627 Totals : 540.8427 *** End of Report ***

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Katrina Taylor

Sample Login Details		
Your reference	E32976BT2 - Kogarah	
Envirolab Reference	370762	
Date Sample Received	17/01/2025	
Date Instructions Received	17/01/2025	
Date Results Expected to be Reported	24/01/2025	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	33 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	Metals in Waters -Acid extractable	On Hold
BH203-0.1-0.2	✓	✓	✓	✓	✓	✓	✓	\checkmark				
BH203-0.3-0.4	✓	✓	\checkmark				✓					
BH203-0.8-1												✓
BH207-0-0.1	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark				
BH207-0.2-0.3												√
BH210-0.05-0.1	✓	✓	✓	✓	\checkmark	✓	✓	\checkmark				
BH210-0.2-0.3												\checkmark
BH210-0.55-0.6	✓	✓	✓				√					
BH211-0.05-0.1												\checkmark
BH211-0.2-0.3	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark				
BH212-0.1-0.15	✓	✓	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark				
BH212-0.2-0.4												\checkmark
BH214-0.05-0.15												\checkmark
BH214-0.2-0.3	✓	\checkmark	✓	\checkmark	\checkmark	✓	1	\checkmark				
BH214-0.3-0.4	✓	✓	✓				✓					
BH215-0-0.1	✓	✓	✓	✓	\checkmark	✓	✓	\checkmark				
BH215-0.2-0.3	✓	✓	✓				✓					
BH216-0-0.1	✓	✓	✓	✓	✓	\checkmark	✓	✓				
BH216-0.1-0.2				-								\checkmark
BH216-0.5-0.7				-								\checkmark
BH216-1-1.3	✓	✓	✓				✓					
BH216-1.3-1.4			<u> </u>									✓
BH217-0-0.1	✓	✓	✓	✓	✓	✓	√	✓				
BH217-0.2-0.3	✓	✓	✓				✓					
BH217-0.5-0.6			<u> </u>				<u> </u>					✓
BH219-0-0.1	✓	✓	✓	✓	✓	✓	√	✓				
BH219-0.2-0.3				-								√
BH219-0.5-0.6	✓	✓	✓	✓	✓	✓	√	✓				
BH219-0.7-1			-	-								√
SDUP201	✓	✓	✓	✓	✓	✓	√					
TS-S201	\checkmark		<u> </u>	-							\square	
TB-S201	√ -	✓	✓				√					

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	Metals in Waters -Acid extractable	On Hold
FR-HA-201									✓	✓	\checkmark	

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

|--|

÷

TO: ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200 E: (03) 09106201				JKE Job Number Date Res]			FROM: JKEnvironments REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113									
F: (02) 99106	201			Required							P: 02-			K, NS\		3 -9888	5001	
Attention: Aileen				Page:	2]			Atten		5	- COLO -	(atrin		A. 7			
Location: Kogarah				1	1	v	<u>. </u>	Sa	mple Pr		<u>ed in E</u>			nts.co	<u>m:au</u>			
Sampler:	VR/JT		ing and the second s	, · · · ·	n / ******				r				equire	· ·				
Date Sampled	Lab Ref:	Sample Number	Depth (m).	Sample Container	PID	Sample Description	#6a NEPM	#3	Asbestos (detection)	#6	втех				7			
15/01/2025	l	вн203	0.1-0.2	G, A	0.2	F: silty sand	x	-			r.		'n					
15/01/2025	2	BH203	0.3-0.4	G, A	0	F: silty sandy clay		x										
15/01/2025	3	BH203	0.8-1	G, A	0	SANDSTONE												
16/01/2025	4	BH207	0-0.1	G, A	0	F: silty sand	Χ.				· · ·							
16/01/2025	5	BH207	0.2-0.3	G	0.1	SANDSTONE												
16/01/2025	6	BH210	0.05-0.1	G, A	1	F: gravel	X	а. 					-				، ب	:
16/01/2025	1	BH210	0.2-0.3	G, A	0.5	F: silty sand											1111	
16/01/2025	Ŷ	BH210	0.55-0.6	G, A	1.8	F: silty sandy clay		x	7.4 					·				
16/01/2025	q	BH211	0.05-0.1	G, A	0.1	F: gravel										<u> </u>		
16/01/2025	10	BH211	0.2-0.3	G, A	0	F: silty sand	x											
16/01/2025	ų	BH212	0.1-0.15	G, A	0	F: gravel	x				-	1						
16/01/2025	12	BH212	0:2-0.4	G, A	0	F: silty sand												
16/01/2025	В	BH214	0.05-0.15	G, A	-0.1	F: gravel						1	····	<u>kan</u> -			<u> </u>	<u> </u>
16/01/2025	IÚ	BH214	0.2-0.3	G, A	0.4	F: silty sand	x				a - 1.5 1						1	;
16/01/2025	17	BH214	0.3-0.4	G, A	0.5	F: silty sand		x										· · ·
15/01/2025	16	BH215	0-0,1	G, A	0	F: silty sand	x				· · ·		-					
15/01/2025	17	BH215	0.2-0.3	G, A	0	F: silty sand		x				1.						<u> </u>
15/01/2025	18	BH216	0-0.1	G, A	0	F: silty sand	X		1. 						4		·	
15/01/2025	Q	BH216	0.1-0.2	G, A	0	F: silty sand								5		Envi	rolab	Servi
15/01/2025	20	BH216	0.5-0.7	G, A	0	F: silty sand	- <u>-</u> -				· · · *		ENV	ROLF	Вс		12/	shie
15/01/2025	21	BH216	1-1.3	G, A	0	F: sandy clay	<u> </u>	X	- '	-	+				37	Ph:	(02) 9)	SW 2 910 6
15/01/2025	22	BH216	1.3-1.4	G	0	F: sandy clay				*						101	โก่	
15/01/2025	22	BH217	0-0.1	G, A	0	F: silty sand	и. Т.Х.		<u> </u>			<u>^</u>	100.0		eived eived		5	<u> </u>
15/01/2025	24	BH217	0.2-0.3	G, A	0.2	F: silty sand	، بر ما	x				-	Rec	eived	By: (HĐ	-	
15/01/2025)(BH217	0.2-0.3	G, A	0.8	F: silty sand		 	<u> </u>	-	1	<u> </u>	Coo	lina:	Coffee	ack		<u> </u>
Remarks (con						· · · · · · · · · · · · · · · · · · ·	G - 2	50mg plock	ntaine Glass Asbe: Bag	Jar	ag	<u> </u>	L Seo	luritÿ:	ntac	/Brok	en/M	bpe:
Relinguished	By:			Date:			Time	:			Receiv Ø- W	ed By	Iak	-		Date:	1)

•

1

.

ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET				JKE Job Number	:	E32976BT2]					K		viro	nn	ner	hte
CHATSWOOD P: (02) 99106 F: (02) 99106	200	2067		Date Res Required		STANDARD]			REAR MACO P: 02-9	OF 11	5 WIC E PAR	KS RO)AD W 211	3		
Attention: Ai	leen			Page:		2 of 2				Attent			F: 02-9888 5001 Katrina Taylor					
	1						-1	-						kenvi	ronme	nts.co		
Location:	Kogar		•							Sai	nple Pr				n Ice			
Sampler:	VR/JT	L <u>'', </u>	·	T	<u>г - ^</u>	· · · · ·	_		<u> </u>			ests R	equire	2d	1	—	T	1
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	#6a NEPM	#3	Asbestos (detection)	9#	втех							
15/01/2025	26	вн219	0-0.1	G, A	0	F: silty sand	x											
15/01/2025	27	BH219	0.2-0.3	G, A	0.1	F: silty sand												
15/01/2025	28	вн219	0.5-0.6	G, A	0.3	F: silty sand	x											
15/01/2025	29	BH219	0.7-1	G, A	1.7	F: silty sand					-						:	
15/01/2025	30	SDUP201		G	NA	DUPLICATE				х								
16/01/2025	SIO	SDUP202	-	G	NA	DUPLICATE				x		7	િલ્લાયક શું	<u>م</u>	" J. 20" -	5,8'i (ĸ	
15/01/2025	31	TS-S201	-	v	NA	TRIP SPIKE					x							
15/01/2025	31	TB-S201	_	V	NA	TRIP BLANK		x						, ,		-		
16/01/2025	33	FR-HA-201	-	#3	NA	RINSATE		x										
17/01/2025	NL	FR-SPT-201		#3	NA	RINSATE		x										
																L		
н. 			r.1	-					3	-				ŀ		L		
3			-								 	: 	• •			-		
								<u> </u>										
·																:		
			ļ															ļ,
	-		·			4												
-										,								
									,					к •				
											-							
· ` ,			<i>i.</i>							:		1	[ļ		
Remarks (cor	nments								ntaine Glass						0-	ر	<u>ر ۱</u>	-
			જ્જરલ ગાઉઝ				A - Zi	plock	Asbes		ag				5	107	67	
Relinquished	By:	TS-S2	201 broke du	ring transi Date:	it		P - Pl Time		Bag		Receiv	ed Bu			_17		<u>, n</u>	;
nemiquisiteu	-y.			Bule.			line	•			, accen	eu by	•			Date	W	

SAMPLE AND CHAIN OF CUSTODY FORM

FROM:

-.

<u>TO:</u>

2

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 370762-A

Client Details	
Client	JK Environments
Attention	Katrina Taylor
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32976BT2 - Kogarah
Number of Samples	Additional analysis
Date samples received	17/01/2025
Date completed instructions received	28/01/2025

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	04/02/2025
Date of Issue	04/02/2025
NATA Accreditation Number 290	1. This document shall not be reproduced except in full.
Accredited for compliance with Is	O/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Diego Bigolin, Inorganics Supervisor Giovanni Agosti, Group Technical Manager Loren Bardwell, Development Chemist Timothy Toll, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

Misc Inorg - Soil					_	
Our Reference		370762-A-1	370762-A-8	370762-A-10	370762-A-15	370762-A-24
Your Reference	UNITS	BH203	BH210	BH211	BH214	BH217
Depth		0.1-0.2	0.55-0.6	0.2-0.3	0.3-0.4	0.2-0.3
Date Sampled		15/01/2025	16/01/2025	16/01/2025	16/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/01/2025	30/01/2025	30/01/2025	30/01/2025	30/01/2025
Date analysed	-	30/01/2025	30/01/2025	30/01/2025	30/01/2025	30/01/2025
pH 1:5 soil:water	pH Units	9.1	7.7	7.7	6.9	7.9

CEC					_	
Our Reference		370762-A-1	370762-A-8	370762-A-10	370762-A-15	370762-A-24
Your Reference	UNITS	BH203	BH210	BH211	BH214	BH217
Depth		0.1-0.2	0.55-0.6	0.2-0.3	0.3-0.4	0.2-0.3
Date Sampled		15/01/2025	16/01/2025	16/01/2025	16/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
Exchangeable Ca	meq/100g	8.7	11	6.6	3.4	12
Exchangeable K	meq/100g	0.3	0.1	<0.1	<0.1	0.2
Exchangeable Mg	meq/100g	0.8	0.3	0.4	0.4	0.8
Exchangeable Na	meq/100g	0.4	<0.1	<0.1	<0.1	<0.1
Cation Exchange Capacity	meq/100g	10	11	7.2	3.9	13

TCLP Preparation - Acid					
Our Reference		370762-A-1	370762-A-10	370762-A-15	370762-A-24
Your Reference	UNITS	BH203	BH211	BH214	BH217
Depth		0.1-0.2	0.2-0.3	0.3-0.4	0.2-0.3
Date Sampled		15/01/2025	16/01/2025	16/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil	Soil
pH of soil for fluid# determ.	pH units	8.7	8.3	7.4	7.0
pH of soil TCLP (after HCl)	pH units	1.8	1.8	1.8	1.8
Extraction fluid used		1	1	1	1
pH of final Leachate	pH units	5.0	4.9	4.9	5.0

PAHs in TCLP (USEPA 1311)			
Our Reference		370762-A-10	370762-A-15
Your Reference	UNITS	BH211	BH214
Depth		0.2-0.3	0.3-0.4
Date Sampled		16/01/2025	16/01/2025
Type of sample		Soil	Soil
Date extracted	-	30/01/2025	30/01/2025
Date analysed	-	31/01/2025	31/01/2025
Naphthalene in TCLP	mg/L	<0.0001	<0.0001
Acenaphthylene in TCLP	mg/L	<0.0001	<0.0001
Acenaphthene in TCLP	mg/L	<0.0001	<0.0001
Fluorene in TCLP	mg/L	<0.0001	<0.0001
Phenanthrene in TCLP	mg/L	<0.0001	<0.0001
Anthracene in TCLP	mg/L	<0.0001	<0.0001
Fluoranthene in TCLP	mg/L	<0.0001	<0.0001
Pyrene in TCLP	mg/L	<0.0001	<0.0001
Benzo(a)anthracene in TCLP	mg/L	<0.0001	<0.0001
Chrysene in TCLP	mg/L	<0.0001	<0.0001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.0002	<0.0002
Benzo(a)pyrene in TCLP	mg/L	<0.0001	<0.0001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.0001	<0.0001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.0001	<0.0001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.0001	<0.0001
Total +ve PAH's	mg/L	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	89	108

Metals from Leaching Fluid pH 2.9 or 5				
Our Reference		370762-A-1	370762-A-10	370762-A-24
Your Reference	UNITS	BH203	BH211	BH217
Depth		0.1-0.2	0.2-0.3	0.2-0.3
Date Sampled		15/01/2025	16/01/2025	15/01/2025
Type of sample		Soil	Soil	Soil
Date extracted	-	30/01/2025	30/01/2025	30/01/2025
Date analysed	-	30/01/2025	30/01/2025	30/01/2025
Lead	mg/L	0.06	0.1	0.3

Method ID	Methodology Summary
Inorg-001	pH - Measured using pH meter and electrode. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-OES analytical finish.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			30/01/2025	8	30/01/2025	30/01/2025		30/01/2025	[NT]
Date analysed	-			30/01/2025	8	30/01/2025	30/01/2025		30/01/2025	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	8	7.7	7.7	0	100	[NT]

QU	QUALITY CONTROL: CEC							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			04/02/2025	[NT]	[NT]		[NT]	04/02/2025		
Date analysed	-			04/02/2025	[NT]	[NT]		[NT]	04/02/2025		
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]		[NT]	90		
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]		[NT]	95		
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]		[NT]	90		
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	96	[NT]	

QUALITY CONT	ROL: PAHs	in TCLP	(USEPA 1311)			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	[NT]
Date extracted	-			30/01/2025	10	30/01/2025	30/01/2025		30/01/2025	
Date analysed	-			31/01/2025	10	31/01/2025	31/01/2025		31/01/2025	
Naphthalene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	94	
Acenaphthylene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	[NT]	
Acenaphthene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	95	
Fluorene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	95	
Phenanthrene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	90	
Anthracene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	[NT]	
Fluoranthene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	94	
Pyrene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	93	
Benzo(a)anthracene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	[NT]	
Chrysene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	81	
Benzo(bjk)fluoranthene in TCLP	mg/L	0.0002	Org-022/025	<0.0002	10	<0.0002	<0.0002	0	[NT]	
Benzo(a)pyrene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	131	
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	[NT]	
Dibenzo(a,h)anthracene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	[NT]	
Benzo(g,h,i)perylene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	10	<0.0001	<0.0001	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	111	10	89	93	4	97	

QUALITY CONTROL: Metals from Leaching Fluid pH 2.9 or 5			Duplicate			Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			30/01/2025	[NT]		[NT]	[NT]	30/01/2025	
Date analysed	-			30/01/2025	[NT]		[NT]	[NT]	30/01/2025	
Lead	mg/L	0.03	Metals-020	<0.03	[NT]	[NT]	[NT]	[NT]	101	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	N Definitione
Quality Contro	
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Katrina Taylor

Sample Login Details	
Your reference	E32976BT2 - Kogarah
Envirolab Reference	370762-A
Date Sample Received	17/01/2025
Date Instructions Received	28/01/2025
Date Results Expected to be Reported	04/02/2025

Sample Condition	
Samples received in appropriate condition for analysis	Holding time exceedance
No. of Samples Provided	Additional analysis
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	10
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments

Holding time exceedance pH

Please contact the laboratory within 24 hours if you wish to cancel the aformentioned testing. Otherwise testing will proceed as per the COC and hence invoiced accordingly.

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab	Services	Pty L	.td
-----------	----------	-------	-----

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	Misc Inorg - Soil	CEC	TCLP Preparation - Acid	PAHs in TCLP (USEPA 1311)	Lead	On Hold
BH203-0.1-0.2	✓	✓	✓		√	
BH203-0.3-0.4						✓
BH203-0.8-1						✓
BH207-0-0.1						\checkmark
BH207-0.2-0.3						\checkmark
BH210-0.05-0.1						✓
BH210-0.2-0.3						✓
BH210-0.55-0.6	\checkmark	\checkmark				
BH211-0.05-0.1						\checkmark
BH211-0.2-0.3	✓	✓	✓	\checkmark	✓	
BH212-0.1-0.15						\checkmark
BH212-0.2-0.4						✓
BH214-0.05-0.15						✓
BH214-0.2-0.3						✓
BH214-0.3-0.4	✓	✓	\checkmark	✓		
BH215-0-0.1						✓
BH215-0.2-0.3						✓
BH216-0-0.1						✓
BH216-0.1-0.2						✓
BH216-0.5-0.7						✓
BH216-1-1.3						✓
BH216-1.3-1.4						✓
BH217-0-0.1			_			√
BH217-0.2-0.3	✓	✓	✓		✓	
BH217-0.5-0.6						✓ ✓
BH219-0-0.1						✓ ✓
BH219-0.2-0.3						✓ ✓
BH219-0.5-0.6						✓ ✓
BH219-0.7-1						✓ ✓
SDUP201						✓ ✓
TS-S201						✓ ✓
TB-S201						✓

Sample ID	Misc Inorg - Soil	CEC	TCLP Preparation - Acid	PAHs in TCLP (USEPA 1311)	Lead	On Hold
FR-HA-201						\checkmark
BH203 - [TRIPLICATE]-0.1-0.2						✓
BH211 - [TRIPLICATE]-0.2-0.3						✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Anna Bui

From:	Katrina Taylor <ktaylor@jkenvironments.com.au></ktaylor@jkenvironments.com.au>
Sent:	Tuesday, 28 January 2025 3:27 PM
То:	Envirolab Sydney Sample Receipt
Subject:	FW: Results for Registration 370762 E32976BT2 - Kogarah
Attachments:	370762-[R00].pdf; 370762-COC.pdf; JK Environment Soil for Envirolab 370762.xlsx; 370762.Excel.xlsx

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Afternoon,

Please schedule the following analysis on standard TA: BH203 (0.1-0.2) pH & CEC, and Lead TCLP BH210 (0.55-0.6) pH & CEC P BH211 (0.2-0.3) pH & CEC, and Lead & PAH TCLP

(5 BH214 (0.3-0.4) pH & CEC, and PAH TCLP

7 BH217 (0.2-0.3) pH & CEC, Lead TCLP

Thank you.

Regards Katrina Taylor Senior Associate | Environmental Scientist NSW Licensed Asbestos Assessor

T: +61 2 9888 5000 D: +61 418 481 628 E: <u>KTaylor@jkenvironments.com.au</u> www.jkenvironments.com.au

PO Box 976 NORTH RYDE BC NSW 1670 115 Wicks Road MACQUARIE PARK NSW 2113

ELS REF: 3 370762-A

AS-

MT: STANDARD DE: 4/2/25

JKEnvironments

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

From: Stuart Chen <SChen2@envirolab.com.au> Sent: Friday, 24 January 2025 4:46 PM To: Katrina Taylor <KTaylor@jkenvironments.com.au> Subject: Results for Registration 370762 E32976BT2 - Kogarah

This message originated outside the JKG network. If this looks to be from a staff member, it is likely to be malicious (spam/phish attack). Do not click links of open attachments unless you recognise the sender and know the content is safe.

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you an Excel or .csv file containing the results

Please note that a hard copy will not be posted.

CERTIFICATE OF ANALYSIS 371803

Client Details	
Client	JK Environments
Attention	Katrina Taylor
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32976BT2, Kogarah
Number of Samples	16 Soil
Date samples received	31/01/2025
Date completed instructions received	31/01/2025

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	07/02/2025				
Date of Issue	07/02/2025				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Amanda Lee Authorised by Asbestos Approved Signatory: Lucy Zhu <u>Results Approved By</u>

Giovanni Agosti, Group Technical Manager Stuart Chen, Asbestos Approved Identifier/Report coordinator Timothy Toll, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		371803-2	371803-5	371803-6	371803-8	371803-9
Your Reference	UNITS	BH201	BH201	BH208	BH208	BH209
Depth		0.1-0.2	0.9-1	0-0.1	0.45-0.55	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	99	101	104	108	109

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		371803-11	371803-13	371803-15
Your Reference	UNITS	BH209	BH213	BH218
Depth		0.6-0.8	0-0.1	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil
Date extracted	-	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	04/02/2025	04/02/2025	04/02/2025
TRH C ₆ - C ₉	mg/kg	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25
vTRH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	96	103	105

svTRH (C10-C40) in Soil						
Our Reference		371803-2	371803-5	371803-6	371803-8	371803-9
Your Reference	UNITS	BH201	BH201	BH208	BH208	BH209
Depth		0.1-0.2	0.9-1	0-0.1	0.45-0.55	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	05/02/2025	05/02/2025	05/02/2025	05/02/2025	05/02/2025
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	59
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	180	270
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	180	110	260
Total +ve TRH (C10-C36)	mg/kg	<50	<50	180	290	590
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	65
TRH >C10 -C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	65
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	200	260	440
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	100	<100	190
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	310	260	700
Surrogate o-Terphenyl	%	95	100	103	109	105

svTRH (C10-C40) in Soil				
Our Reference		371803-11	371803-13	371803-15
Your Reference	UNITS	BH209	BH213	BH218
Depth		0.6-0.8	0-0.1	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil
Date extracted	-	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	05/02/2025	05/02/2025	05/02/2025
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50
TRH >C10 -C16 less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	96	94	94

PAHs in Soil						
Our Reference		371803-2	371803-5	371803-6	371803-8	371803-9
Your Reference	UNITS	BH201	BH201	BH208	BH208	BH209
Depth		0.1-0.2	0.9-1	0-0.1	0.45-0.55	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	05/02/2025	05/02/2025	05/02/2025	05/02/2025	05/02/2025
Naphthalene	mg/kg	<0.1	<0.1	0.1	0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	0.1	0.8	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Phenanthrene	mg/kg	<0.1	0.3	0.9	11	0.1
Anthracene	mg/kg	<0.1	<0.1	0.2	1.6	<0.1
Fluoranthene	mg/kg	<0.1	1.4	1.1	9.0	0.3
Pyrene	mg/kg	<0.1	1.3	1	7.9	0.3
Benzo(a)anthracene	mg/kg	<0.1	0.9	0.5	3.5	0.2
Chrysene	mg/kg	<0.1	1.1	0.6	3.8	0.2
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	1	0.8	5.1	0.3
Benzo(a)pyrene	mg/kg	<0.05	0.79	0.5	3.3	0.2
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.4	0.2	1.4	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.1	<0.1	0.5	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.4	0.3	1.7	0.1
Total +ve PAH's	mg/kg	<0.05	8.1	6.2	50	1.7
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	1.2	0.6	4.9	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	1.2	0.7	4.9	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	1.2	0.7	4.9	<0.5
Surrogate p-Terphenyl-d14	%	107	106	102	101	106

PAHs in Soil				
Our Reference		371803-11	371803-13	371803-15
Your Reference	UNITS	BH209	BH213	BH218
Depth		0.6-0.8	0-0.1	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil
Date extracted	-	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	05/02/2025	05/02/2025	05/02/2025
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	0.7
Anthracene	mg/kg	<0.1	<0.1	0.2
Fluoranthene	mg/kg	<0.1	0.1	1.2
Pyrene	mg/kg	<0.1	0.1	1.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	0.6
Chrysene	mg/kg	<0.1	<0.1	0.6
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	0.9
Benzo(a)pyrene	mg/kg	0.07	0.07	0.62
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	0.3
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	0.4
Total +ve PAH's	mg/kg	0.07	0.4	6.6
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	0.9
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	0.9
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	0.9
Surrogate p-Terphenyl-d14	%	104	105	103

Organochlorine Pesticides in soil						
Our Reference		371803-2	371803-6	371803-9	371803-13	371803-15
Your Reference	UNITS	BH201	BH208	BH209	BH213	BH218
Depth		0.1-0.2	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	05/02/2025	05/02/2025	05/02/2025	05/02/2025	05/02/2025
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total Positive Aldrin+Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	124	132	138	131	128

Organophosphorus Pesticides in Soil						
Our Reference		371803-2	371803-6	371803-9	371803-13	371803-15
Your Reference	UNITS	BH201	BH208	BH209	BH213	BH218
Depth		0.1-0.2	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	05/02/2025	05/02/2025	05/02/2025	05/02/2025	05/02/2025
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Mevinphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phorate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Disulfoton	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyrifos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion-Methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenthion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methidathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenamiphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phosalone	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Coumaphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 4-Chloro-3-NBTF	%	124	132	138	131	128

PCBs in Soil						
Our Reference		371803-2	371803-6	371803-9	371803-13	371803-15
Your Reference	UNITS	BH201	BH208	BH209	BH213	BH218
Depth		0.1-0.2	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	05/02/2025	05/02/2025	05/02/2025	05/02/2025	05/02/2025
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate 2-Fluorobiphenyl	%	95	102	102	97	99

Acid Extractable metals in soil						
Our Reference		371803-2	371803-5	371803-6	371803-8	371803-9
Your Reference	UNITS	BH201	BH201	BH208	BH208	BH209
Depth		0.1-0.2	0.9-1	0-0.1	0.45-0.55	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
Arsenic	mg/kg	<4	6	5	7	4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	15	15	12	22	14
Copper	mg/kg	43	38	15	11	24
Lead	mg/kg	6	130	36	84	55
Mercury	mg/kg	<0.1	0.4	<0.1	0.2	0.1
Nickel	mg/kg	7	3	6	10	6
Zinc	mg/kg	29	120	67	78	160

Acid Extractable metals in soil				
Our Reference		371803-11	371803-13	371803-15
Your Reference	UNITS	BH209	BH213	BH218
Depth		0.6-0.8	0-0.1	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil
Date prepared	-	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	04/02/2025	04/02/2025	04/02/2025
Arsenic	mg/kg	5	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	20	17	9
Copper	mg/kg	<1	15	19
Lead	mg/kg	23	17	160
Mercury	mg/kg	<0.1	<0.1	0.1
Nickel	mg/kg	2	10	6
Zinc	mg/kg	12	42	110

Moisture						
Our Reference		371803-2	371803-5	371803-6	371803-8	371803-9
Your Reference	UNITS	BH201	BH201	BH208	BH208	BH209
Depth		0.1-0.2	0.9-1	0-0.1	0.45-0.55	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
Date analysed	-	05/02/2025	05/02/2025	05/02/2025	05/02/2025	05/02/2025
Moisture	%	10	17	22	12	19
Moisture						
Our Reference		371803-11	371803-13	371803-15		
Your Reference	UNITS	BH209	BH213	BH218		
Depth		0.6-0.8	0-0.1	0-0.1		
Date Sampled		31/01/2025	31/01/2025	31/01/2025		
Type of sample		Soil	Soil	Soil		
Date prepared	-	04/02/2025	04/02/2025	04/02/2025		
Date analysed	-	05/02/2025	05/02/2025	05/02/2025		
Moisture	%	18	16	10		

Asbestos ID - soils NEPM - ASB-001						
Our Reference		371803-2	371803-5	371803-6	371803-7	371803-9
Your Reference	UNITS	BH201	BH201	BH208	BH208	BH209
Depth		0.1-0.2	0.9-1	0-0.1	0.2-0.5	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	04/02/2025	04/02/2025	04/02/2025	04/02/2025	04/02/2025
Sample mass tested	g	710.96	153.98	715.12	286.88	731.51
Sample Description	-	Grey coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected				
ACM >7mm Estimation*	g	-	-	-	-	-
FA and AF Estimation*	g	-	_	-	-	_
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01	<0.01	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001	<0.001	<0.001
Asbestos comments	-	Nil	Nil	Nil	Nil	Nil

Asbestos ID - soils NEPM - ASB-001			
Our Reference		371803-13	371803-15
Your Reference	UNITS	BH213	BH218
Depth		0-0.1	0-0.1
Date Sampled		31/01/2025	31/01/2025
Type of sample		Soil	Soil
Date analysed	-	04/02/2025	04/02/2025
Sample mass tested	g	431.65	670.67
Sample Description	-	Brown coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	-
FA and AF Estimation*	g	-	-
ACM >7mm Estimation*	%(w/w)	<0.01	<0.01
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001
Asbestos comments	-	Nil	Nil

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF relative to the sample mass tested)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.

Method ID	Methodology Summary
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021/022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			04/02/2025	2	04/02/2025	04/02/2025		04/02/2025	
Date analysed	-			04/02/2025	2	04/02/2025	04/02/2025		04/02/2025	
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	2	<25	<25	0	101	
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	2	<25	<25	0	101	
Benzene	mg/kg	0.2	Org-023	<0.2	2	<0.2	<0.2	0	106	
Toluene	mg/kg	0.5	Org-023	<0.5	2	<0.5	<0.5	0	99	
Ethylbenzene	mg/kg	1	Org-023	<1	2	<1	<1	0	98	
m+p-xylene	mg/kg	2	Org-023	<2	2	<2	<2	0	102	
o-Xylene	mg/kg	1	Org-023	<1	2	<1	<1	0	103	
Naphthalene	mg/kg	1	Org-023	<1	2	<1	<1	0	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-023	111	2	99	108	9	100	

QUALITY CO	NTROL: svT	RH (C10-	-C40) in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			04/02/2025	2	04/02/2025	04/02/2025		04/02/2025	
Date analysed	-			05/02/2025	2	05/02/2025	05/02/2025		05/02/2025	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	2	<50	<50	0	101	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	2	<100	<100	0	99	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	2	<100	<100	0	129	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	2	<50	<50	0	101	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	2	<100	<100	0	99	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	2	<100	<100	0	129	
Surrogate o-Terphenyl	%		Org-020	101	2	95	96	1	95	

QUALI	TY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			04/02/2025	2	04/02/2025	04/02/2025		04/02/2025	
Date analysed	-			05/02/2025	2	05/02/2025	05/02/2025		05/02/2025	
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	86	
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	82	
Fluorene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	80	
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	82	
Anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	82	
Pyrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	84	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	106	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	2	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	2	<0.05	<0.05	0	94	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	100	2	107	104	3	82	

QUALITY CONT	ROL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			04/02/2025	2	04/02/2025	04/02/2025		04/02/2025	
Date analysed	-			05/02/2025	2	05/02/2025	05/02/2025		05/02/2025	
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	90	
НСВ	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	84	
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	88	
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Aldrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	92	
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	84	
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	82	
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	92	
Endrin	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	90	
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	94	
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	88	
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Mirex	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	120	2	124	128	3	121	

QUALITY CONTR	OL: Organopl	nosphoru	s Pesticides in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date extracted	-			04/02/2025	2	04/02/2025	04/02/2025		04/02/2025		
Date analysed	-			05/02/2025	2	05/02/2025	05/02/2025		05/02/2025		
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	104		
Mevinphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Phorate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Diazinon	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Disulfoton	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Chlorpyrifos-methyl	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Parathion-Methyl	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Ronnel	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	84		
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	122		
Malathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	106		
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	86		
Fenthion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Parathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	110		
Bromophos-ethyl	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Methidathion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Fenamiphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Ethion	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	96		
Phosalone	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Coumaphos	mg/kg	0.1	Org-022/025	<0.1	2	<0.1	<0.1	0	[NT]		
Surrogate 4-Chloro-3-NBTF	%		Org-022/025	120	2	124	128	3	121		

QUALIT	Y CONTRO	L: PCBs		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date extracted	-			04/02/2025	2	04/02/2025	04/02/2025		04/02/2025	
Date analysed	-			05/02/2025	2	05/02/2025	05/02/2025		05/02/2025	
Aroclor 1016	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	83	
Aroclor 1260	mg/kg	0.1	Org-021/022/025	<0.1	2	<0.1	<0.1	0	[NT]	
Surrogate 2-Fluorobiphenyl	%		Org-021/022/025	92	2	95	98	3	90	

QUALITY CONT		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			04/02/2025	2	04/02/2025	04/02/2025		04/02/2025	
Date analysed	-			04/02/2025	2	04/02/2025	04/02/2025		04/02/2025	
Arsenic	mg/kg	4	Metals-020	<4	2	<4	<4	0	103	
Cadmium	mg/kg	0.4	Metals-020	<0.4	2	<0.4	<0.4	0	92	
Chromium	mg/kg	1	Metals-020	<1	2	15	17	12	96	
Copper	mg/kg	1	Metals-020	<1	2	43	50	15	96	
Lead	mg/kg	1	Metals-020	<1	2	6	6	0	92	
Mercury	mg/kg	0.1	Metals-021	<0.1	2	<0.1	<0.1	0	110	
Nickel	mg/kg	1	Metals-020	<1	2	7	9	25	94	
Zinc	mg/kg	1	Metals-020	<1	2	29	28	4	90	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Note: All samples analysed as received. However, samples 371803-5 & 7 are below the minimum recommended 500mL sample volume as per National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Katrina Taylor

Sample Login Details	
Your reference	E32976BT2, Kogarah
Envirolab Reference	371803
Date Sample Received	31/01/2025
Date Instructions Received	31/01/2025
Date Results Expected to be Reported	07/02/2025

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	16 Soil
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	4
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst									
Phone: 02 9910 6200	Phone: 02 9910 6200									
Fax: 02 9910 6201	Fax: 02 9910 6201									
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au									

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	vTRH(C6-C10)/BTEXN in Soil	svTRH (C10-C40) in Soil	PAHs in Soil	Organochlorine Pesticides in soil	Organophosphorus Pesticides in Soil	PCBs in Soil	Acid Extractable metalsin soil	Asbestos ID - soils NEPM - ASB- 001	On Hold
BH201-0-0.05									✓
BH201-0.1-0.2	✓	✓	✓	✓	✓	✓	✓	✓	
BH201-0.3-0.5									✓
BH201-0.6-0.8									✓
BH201-0.9-1	✓	\checkmark	✓				✓	\checkmark	
BH208-0-0.1	✓	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓	\checkmark	
BH208-0.2-0.5									✓
BH208-0.45-0.55	\checkmark	\checkmark	\checkmark				\checkmark	\checkmark	
BH209-0-0.1	\checkmark	\checkmark	✓	✓	\checkmark	\checkmark	✓	✓	
BH209-0.2-0.5									✓
BH209-0.6-0.8	\checkmark	\checkmark	\checkmark				✓		
BH209-0.85-0.95									\checkmark
BH213-0-0.1	\checkmark	✓	✓	\checkmark	\checkmark	✓	✓	\checkmark	
BH213-0.3-0.5									✓
BH218-0-0.1	 ✓ 	✓	✓	✓	✓	✓	✓	✓	
BH218-0.3-0.45									✓

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

·				<u>`</u>	AIVIPL	LE AND CHAIN OF CUS	100	<u>/T_F</u>	JKIV	<u> </u>			-					
TO: ENVIROLAB S 12 ASHLEY ST CHATSWOOD	TREET			JKE Job Number:	:	E32976BT2	, Ryse Armental				FROM			- Ènv	virc	onn	nei	nts
P: (02) 99106				Date Res	sults	STANDARD]			REAR	OF 11						
F: (02) 99106	j 201			Required	1 :	5	************	1			масо					3		
Attention: Ai	"eon			Deres		1 of 1 5 4 5 5 7 2		7			P: 02-9					-9888		
Attention: An	leen			Page:		1 of 1	ani amanana.	ł			Attent					a Taylo nts.co		
Location:	Kogar	rah, NSW	е	Sala isi Sala isi						Sa	mple Pr		_	_		100.00	<u>duna</u>	
Sampler:	VR					and a set of the set o	×				T	ests Re	equire	d				
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	#6a NEPM	ŧ	Asbestos NEPM	9#	BTEX							
31/01/2025	\Box	BH201	0-0.05	G, A	0	F: silty sand												_
31/01/2025	2	BH201	0.1-0.2	G, A	0.2	F: silty gravel	X							-	1			
31/01/2025	3	BH201	0.3-0.5	G, A	0.1	F: silty clay					Τ	Ι	Γ		<u> </u>			
31/01/2025	4	BH201	0.6-0.8	G, A	Ŏ	F: silty sandy clay									· .			
31/01/2025	5	BH201	0.9-1	G, A	0	F: silty sandy clay		x	x									
31/01/2025	6	BH208	0-0.1	G, A	0	F: silty sand	x											ŀ
31/01/2025	1	BH208	0.2-0.5	G, A	0.5	F: silty sandy clay												
31/01/2025	8.	BH208	0.45-0.55	G	0	F: silty sandy clay		x	X						ľ		- -	e
31/01/2025	9	BH209	0-0.1	G, A	0	F: silty sand	x											
31/01/2025	10	BH209	0.2-0.5	G, A	0	F: sandy clay					[
31/01/2025	11	BH209	0.6-0.8	G, A	0	F: sandy clay	\square	x				· ·						
31/01/2025	12	вн209	0.85-0.95	G	0	F: sandy clay												
31/01/2025	13	BH213	0-0.1	G, A	0	F: silty sand	x			Ŀ	•							
31/01/2025	14	BH213	0.3-0.5	G, A	0	F: silty sand			· · ·								4	
<u>31/01/2</u> 025	K	BH218	0-0.1	G, A	0	F: silty sand	x		ļ		-							
31/01/2025	16	BH218	0.3-0.45	G, A	-0	F: silty sand	\square'								منتحد ا	Lane -	anue	
					í		$\bar{[}_'$	Ē'			- -	NIRC	I AB				shley	
							\square					(ROU?		Cna	swoo Ph: ((od NS 2) 99	W 20 19 5:	37 100
		<u> </u>			1		[]			-	<u> </u>	lob N	<u>lo:</u>		803			
×		3,				· · · · · · · · · · · · · · · · · · ·					L r	ate F	Rečei	·		112	ř	
					1	· · · · · · · · · · · · · · · · · · ·		ŀ				time (Rece	ved:	164			
-	<u> </u>		· · · ·					· · · :	7		- E	tecei Temp	Ved E	l y: € ∕Amt	NO-			1
					[Í I					Coolir	g: C	-4cer	back		Ĺ_	
ту					[1	, I					\$ecu		tact	Broke	en/No	ne	
	{	<u> </u>	·		<u>.</u>	- <u> </u>	[]	š			ţ							f
		s/detection lin	nits required)):			G - 25 A - Zij	50mg (plock /	ntaine Glass J Asbes	Jar	-							
Relinquished	Ву:		I	Date:			Time: 311	in	5		Receiv	red By: W\\		U .		Date:	: 4 C ·	

SAMPLE AND CHAIN OF CUSTODY FORM

· • • •

`

وموصيعتي

۰.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 371803-A

Client Details	
Client	JK Environments
Attention	Katrina Taylor
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32976BT2, Kogarah
Number of Samples	Additional analysis
Date samples received	31/01/2025
Date completed instructions received	10/02/2025

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	17/02/2025			
Date of Issue	17/02/2025			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with	SO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager <u>Authorised By</u> Nancy Zhang, Laboratory Manager

TCLP Preparation - Acid				
Our Reference		371803-A-5	371803-A-8	371803-A-15
Your Reference	UNITS	BH201	BH208	BH218
Depth		0.9-1	0.45-0.55	0-0.1
Date Sampled		31/01/2025	31/01/2025	31/01/2025
Type of sample		Soil	Soil	Soil
pH of soil for fluid# determ.	pH units	7.4	7.5	6.9
pH of soil TCLP (after HCl)	pH units	2.0	1.8	1.9
Extraction fluid used		1	1	1
pH of final Leachate	pH units	5.0	5.0	5.0

PAHs in TCLP (USEPA 1311)		
Our Reference		371803-A-8
Your Reference	UNITS	BH208
Depth		0.45-0.55
Date Sampled		31/01/2025
Type of sample		Soil
Date extracted	-	12/02/2025
Date analysed	-	14/02/2025
Naphthalene in TCLP	mg/L	0.0001
Acenaphthylene in TCLP	mg/L	<0.0001
Acenaphthene in TCLP	mg/L	<0.0001
Fluorene in TCLP	mg/L	0.0001
Phenanthrene in TCLP	mg/L	0.0004
Anthracene in TCLP	mg/L	<0.0001
Fluoranthene in TCLP	mg/L	<0.0001
Pyrene in TCLP	mg/L	<0.0001
Benzo(a)anthracene in TCLP	mg/L	<0.0001
Chrysene in TCLP	mg/L	<0.0001
Benzo(bjk)fluoranthene in TCLP	mg/L	<0.0002
Benzo(a)pyrene in TCLP	mg/L	<0.0001
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	<0.0001
Dibenzo(a,h)anthracene in TCLP	mg/L	<0.0001
Benzo(g,h,i)perylene in TCLP	mg/L	<0.0001
Total +ve PAH's	mg/L	0.0006
Surrogate p-Terphenyl-d14	%	77

Metals from Leaching Fluid pH 2.9 or 5							
Our Reference		371803-A-5	371803-A-15				
Your Reference	UNITS	BH201	BH218				
Depth		0.9-1	0-0.1				
Date Sampled		31/01/2025	31/01/2025				
Type of sample		Soil	Soil				
Date extracted	-	17/02/2025	17/02/2025				
Date analysed	-	17/02/2025	17/02/2025				
Lead	mg/L	0.34	0.07				

Method ID	Methodology Summary
Inorg-004	Toxicity Characteristic Leaching Procedure (TCLP) using AS 4439.
	Please note that the mass used may be scaled down from default based on sample mass available.
	Samples are stored at 2-6oC before and after leachate preparation.
Metals-020	Determination of various metals by ICP-AES following buffer determination as per USEPA 1311 and hence AS 4439.3. Extraction Fluid 1 refers to the pH 5.0 buffer and Extraction Fluid 2 is the pH 2.9 buffer.
Org-022/025	Leachates are extracted with Dichloromethane and analysed by GC-MS/GC-MSMS.

QUALITY CONTROL: PAHs in TCLP (USEPA 1311)					Duplicate				Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]		
Date extracted	-			12/02/2025	[NT]		[NT]	[NT]	12/02/2025			
Date analysed	-			14/02/2025	[NT]		[NT]	[NT]	14/02/2025			
Naphthalene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	80			
Acenaphthylene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	[NT]			
Acenaphthene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	73			
Fluorene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	90			
Phenanthrene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	88			
Anthracene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	[NT]			
Fluoranthene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	75			
Pyrene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	85			
Benzo(a)anthracene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	[NT]			
Chrysene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	91			
Benzo(bjk)fluoranthene in TCLP	mg/L	0.0002	Org-022/025	<0.0002	[NT]		[NT]	[NT]	[NT]			
Benzo(a)pyrene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	84			
Indeno(1,2,3-c,d)pyrene - TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	[NT]			
Dibenzo(a,h)anthracene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	[NT]			
Benzo(g,h,i)perylene in TCLP	mg/L	0.0001	Org-022/025	<0.0001	[NT]		[NT]	[NT]	[NT]			
Surrogate p-Terphenyl-d14	%		Org-022/025	68	[NT]		[NT]	[NT]	80			

QUALITY CONTROL: Metals from Leaching Fluid pH 2.9 or 5						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			17/02/2025	5	17/02/2025	17/02/2025		17/02/2025	
Date analysed	-			17/02/2025	5	17/02/2025	17/02/2025		17/02/2025	
Lead	mg/L	0.03	Metals-020	<0.03	5	0.34	0.34	0	103	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Katrina Taylor

Sample Login Details		
Your reference	E32976BT2, Kogarah	
Envirolab Reference	371803-A	
Date Sample Received	31/01/2025	
Date Instructions Received	10/02/2025	
Date Results Expected to be Reported	17/02/2025	

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	Additional analysis
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	4
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	TCLP Preparation - Acid	PAHs in TCLP (USEPA 1311)	Lead	On Hold
BH201-0-0.05				\checkmark
BH201-0.1-0.2				✓ ✓ ✓ ✓
BH201-0.3-0.5				✓
BH201-0.6-0.8				\checkmark
BH201-0.9-1	\checkmark		✓	
BH208-0-0.1				\checkmark
BH208-0.2-0.5				\checkmark
BH208-0.45-0.55	✓	\checkmark		
BH209-0-0.1				\checkmark
BH209-0.2-0.5				\checkmark
BH209-0.6-0.8				\checkmark
BH209-0.85-0.95				✓ ✓ ✓ ✓
BH213-0-0.1				\checkmark
BH213-0.3-0.5				✓
BH218-0-0.1	\checkmark		✓	
BH218-0.3-0.45				\checkmark

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Anna Bui

From:	Katrina Taylor <ktaylor@jkenvironments.com.au></ktaylor@jkenvironments.com.au>
Sent:	Monday, 10 February 2025 10:58 AM
То:	Envirolab Sydney Sample Receipt
Subject:	FW: Results for Registration 371803 E32976BT2, Kogarah
Attachments:	371803-[R00].pdf; 371803-COC.pdf; JK Environment Soil for Envirolab 371803.xlsx;
	371803.Excel.xlsx

CAUTION: This email originated from outside of the organisation. Do not act on instructions, click links or open attachments unless you recognise the sender and know the content is authentic and safe.

Morning,

Please schedule the following samples on standard TA:

BH201 (0.9-1.0m) - TCLP Pb BH208 (0.45-0.55m) - TCLP PAHs BH218 (0-0.1m) - TCLP Pb

Thank you.

Regards Katrina Taylor Senior Associate | Environmental Scientist NSW Licensed Asbestos Assessor

> T: +61 2 9888 5000 D: +61 418 481 628 E: <u>KTaylor@jkenvironments.com.au</u> www.jkenvironments.com.au

PO Box 976 NORTH RYDE BC NSW 1670 115 Wicks Road MACQUARIE PARK NSW 2113

ELJ MEF. 371803-A

A-R_

PAT: 5MN DARD DE: 17(2/25

JKEnvironments

This email and any attachments are confidential and may be privileged in which case neither is intended to be waived. If you have received this message in error, please notify us and remove it from your system. It is your responsibility to check any attachments for viruses and defects before opening or sending them on. At the Company's discretion we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version is to take precedence.

From: Stuart Chen <SChen2@envirolab.com.au>
Sent: Friday, 7 February 2025 12:24 PM
To: Katrina Taylor <KTaylor@jkenvironments.com.au>
Subject: Results for Registration 371803 E32976BT2, Kogarah

This message originated outside the JKG network. If this looks to be from a staff member, it is likely to be malicious (spam/phish attack). Do not click links of open attachments unless you recognise the sender and know the content is safe.

Please refer to attached for: a copy of the Certificate of Analysis a copy of the COC/paperwork received from you an Excel or .csv file containing the results

Please note that a hard copy will not be posted.

Envirolab Services Pty Ltd ABN 37 112 535 645 - 002

25 Research Drive Croydon South VIC 3136 ph +61 3 9763 2500 melbourne@envirolab.com.au www.envirolab.com.au

Certificate of Analysis MGA0261

Client	JK Environments
Contact	Katrina Taylor
Address	115 Wicks Road, Macquarie Park, NSW, 2113
Sample Details	
Your Reference	E32976BT2
Number of Samples	1 Soil
Date Samples Received	21/01/2025
Date Instructions Received	21/01/2025
Analysis Details	
	results, methodology summary and quality control data.
	m the client. Results relate specifically to the samples as received. asis for soils and on an as received basis for other matrices.
Report Details	
Date Results Requested by	28/01/2025

Authorisation Details

 Results Approved By
 Tara White, Metals Supervisor

 Tianna Milburn, Operations Manager

Laboratory Manager

Chris De Luca

Samples in this Report

Envirolab ID	Sample ID	Matrix	Date Sampled	Date Received
MGA0261-01	SDUP202	Soil	16/01/2025	21/01/2025

Volatile TRH and BTEX (Soil)

Envirolab ID	Units	PQL	MGA0261-01
	onits	PQL	
Your Reference			SDUP202
Date Sampled			16/01/2025
TRH C6-C9	mg/kg	25	<25
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 less BTEX (F1)	mg/kg	25	<25
Methyl tert butyl ether (MTBE)	mg/kg	0.50	<0.50
Benzene	mg/kg	0.20	<0.20
Toluene	mg/kg	0.50	<0.50
Ethylbenzene	mg/kg	1.0	<1.0
meta+para Xylene	mg/kg	2.0	<2.0
ortho-Xylene	mg/kg	1.0	<1.0
Total Xylene	mg/kg	3.0	<3.0
Naphthalene (value used in F2 calc)	mg/kg	1.0	<1.0
Surrogate aaa-Trifluorotoluene	%		84.1

Semi-volatile TRH (Soil)

Envirolab ID	Units	PQL	MGA0261-01
Your Reference			SDUP202
Date Sampled			16/01/2025
TRH C10-C14	mg/kg	50	<50
TRH C15-C28	mg/kg	100	<100
TRH C29-C36	mg/kg	100	<100
Total +ve TRH C10-C36	mg/kg	50	<50
TRH >C10-C16	mg/kg	50	<50
TRH >C10-C16 less Naphthalene F2	mg/kg	50	<50
TRH >C16-C34 (F3)	mg/kg	100	<100
TRH >C34-C40 (F4)	mg/kg	100	<100
Total +ve TRH >C10-C40	mg/kg	50	<50
Surrogate o-Terphenyl	%		65.6

Polycyclic Aromatic Hydrocarbons (Soil)

		•	
Envirolab ID	Units	PQL	MGA0261-01
Your Reference		-	SDUP202
Date Sampled			16/01/2025
Naphthalene	mg/kg	0.10	<0.10
Acenaphthylene	mg/kg	0.10	<0.10
Acenaphthene	mg/kg	0.10	<0.10
Fluorene	mg/kg	0.10	<0.10
Phenanthrene	mg/kg	0.10	0.75
Anthracene	mg/kg	0.10	0.23
Fluoranthene	mg/kg	0.10	1.2
Pyrene	mg/kg	0.10	1.3
Benzo(a)anthracene	mg/kg	0.10	0.46
Chrysene	mg/kg	0.10	0.50
Benzo(b,j,k)fluoranthene	mg/kg	0.20	0.81
Benzo(a)pyrene	mg/kg	0.050	0.55
Indeno(1,2,3-c,d)pyrene	mg/kg	0.10	0.37
Dibenzo(a,h)anthracene	mg/kg	0.10	<0.10
Benzo(g,h,i)perylene	mg/kg	0.10	0.42
Total +ve PAH	mg/kg	0.050	6.6
Benzo(a)pyrene TEQ calc zero	mg/kg	0.50	0.72
Benzo(a)pyrene TEQ calc Half	mg/kg	0.50	0.77
Benzo(a)pyrene TEQ calc PQL	mg/kg	0.50	0.82
Surrogate p-Terphenyl-D14	%		121

Organochlorine Pesticides (Soil)

Envirolab ID Your Reference Date Sampled	Units	PQL	MGA0261-01 SDUP202 16/01/2025
alpha-BHC	mg/kg	0.10	<0.10
Hexachlorobenzene	mg/kg	0.10	<0.10
beta-BHC	mg/kg	0.10	<0.10
gamma-BHC	mg/kg	0.10	<0.10
delta-BHC	mg/kg	0.10	<0.10
Heptachlor	mg/kg	0.10	<0.10
Aldrin	mg/kg	0.10	<0.10
Heptachlor epoxide	mg/kg	0.10	<0.10
trans-Chlordane	mg/kg	0.10	<0.10
cis-Chlordane	mg/kg	0.10	<0.10
Endosulfan I	mg/kg	0.10	<0.10
4,4'-DDE	mg/kg	0.10	<0.10
Dieldrin	mg/kg	0.10	<0.10
Endrin	mg/kg	0.10	<0.10
4,4'-DDD	mg/kg	0.10	<0.10
Endosulfan II	mg/kg	0.10	<0.10
Endrin aldehyde	mg/kg	0.10	<0.10
4,4'-DDT	mg/kg	0.10	<0.10
Endosulfan sulfate	mg/kg	0.10	<0.10
Endrin ketone	mg/kg	0.10	<0.10
Methoxychlor	mg/kg	0.10	<0.10
Mirex	mg/kg	0.10	<0.10
Total +ve DDT+DDD+DDE	mg/kg	0.10	<0.10
Total +ve Aldrin + Dieldrin	mg/kg	0.10	<0.10
Total +ve OCP	mg/kg	0.10	<0.10
Surrogate 4-chloro-3-nitrobenzotrifluoride	%		81.4

Organophosphorus Pesticides (Soil)

	. /		
Envirolab ID	Units	PQL	MGA0261-01
Your Reference			SDUP202
Date Sampled			16/01/2025
Dichlorvos	mg/kg	0.10	<0.10
Dimethoate	mg/kg	0.10	<0.10
Diazinon	mg/kg	0.10	<0.10
Chlorpyrifos-methyl	mg/kg	0.10	<0.10
Ronnel	mg/kg	0.10	<0.10
Fenitrothion	mg/kg	0.10	<0.10
Malathion	mg/kg	0.10	<0.10
Chlorpyrifos	mg/kg	0.10	<0.10
Parathion	mg/kg	0.10	<0.10
Bromophos-ethyl	mg/kg	0.10	<0.10
Ethion	mg/kg	0.10	<0.10
Coumaphos	mg/kg	0.10	<0.10
Disulfoton	mg/kg	0.10	<0.10
Fenamiphos	mg/kg	0.10	<0.10
Fenthion	mg/kg	0.10	<0.10
Methidathion	mg/kg	0.10	<0.10
Mevinphos	mg/kg	0.10	<0.10
Parathion-methyl	mg/kg	0.10	<0.10
Phorate	mg/kg	0.10	<0.10
Phosalone	mg/kg	0.10	<0.10
Azinphos-methyl	mg/kg	0.10	<0.10
Surrogate 4-chloro-3-nitrobenzotrifluoride	%		81.4

Polychlorinated Biphenyls (Soil)

Envirolab ID	Units	PQL	MGA0261-01
Your Reference			SDUP202
Date Sampled			16/01/2025
Aroclor 1016	mg/kg	0.10	<0.10
Aroclor 1221	mg/kg	0.10	<0.10
Aroclor 1232	mg/kg	0.10	<0.10
Aroclor 1242	mg/kg	0.10	<0.10
Aroclor 1248	mg/kg	0.10	<0.10
Aroclor 1254	mg/kg	0.10	<0.10
Aroclor 1260	mg/kg	0.10	<0.10
Total +ve PCB (1016-1260)	mg/kg	0.10	<0.10
Surrogate 2-Fluorobiphenyl	%		89.7

Acid Extractable Metals (Soil)

Envirolab ID	Units	PQL	MGA0261-01
Your Reference			SDUP202
Date Sampled			16/01/2025
Arsenic	mg/kg	4.0	<4.0
Cadmium	mg/kg	0.40	<0.40
Chromium	mg/kg	1.0	12
Copper	mg/kg	1.0	18
Mercury	mg/kg	0.10	<0.10
Nickel	mg/kg	1.0	5.9
Lead	mg/kg	1.0	17
Zinc	mg/kg	1.0	60

Inorganics - Moisture (Soil)

Envirolab ID	Units	PQL	MGA0261-01
Your Reference			SDUP202
Date Sampled			16/01/2025
Moisture	%	0.10	17

Method Summary

Method ID	Methodology Summary
INORG-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
METALS-020	Determination of various metals by ICP-OES.
METALS-021	Determination of Mercury by Cold Vapour AAS.
ORG-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
ORG-021/022/025_P CB	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD and/or GC-MS/GC-MSMS.
ORG-022	Determination of semi-volatile organic compounds (SVOCs) by GC-MS. Water samples are extracted by LLE and soils using DCM/Acetone/Methanol.
ORG-022_OC	Determination of semi-volatile organic compounds (SVOCs) by GC-MS. Water samples are extracted by LLE and soils using DCM/Acetone/Methanol.
ORG-022_PAH	Determination of semi-volatile organic compounds (SVOCs) by GC-MS. Water samples are extracted by LLE and solids using DCM/Acetone/Methanol. For PAHs:- Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. 1. 'TEQ PQL' values are assuming all contributing PAHs reported as <pql "total="" 'teq="" +ve="" 2.="" 3.="" <pql="" a="" above.="" actually="" all="" and="" approach="" approaches="" are="" as="" assuming="" at="" be="" below="" between="" but="" calculation="" calculations,="" can="" conservative="" contribute="" contributing="" example,="" false="" for="" give="" given="" half="" hence="" individual="" is="" least="" lowest="" may="" mid-point="" more="" most="" negative="" not="" note,="" of="" pahs="" pahs"="" pahs.<="" positive="" pql="" pql'="" pql.="" present="" present.="" reflective="" reported="" simply="" stipulated="" sum="" susceptible="" td="" teq="" teqs="" that="" the="" therefore,="" this="" to="" total="" values="" when="" zero'="" zero.=""></pql>
ORG-023_F1_TOT	Determination of volatile organic compounds (VOCs) by P&T-GC-MS. Water samples are analysed directly by purge and trap GC-MS. Solids are extracted with Methanol, diluted and analysed by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the

lowest individual PQL and therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

Result Definitions

Identifier	Description
NR	Not reported
NEPM	National Environment Protection Measure
NS	Not specified
LCS	Laboratory Control Sample
RPD	Relative Percent Difference
>	Greater than
<	Less than
PQL	Practical Quantitation Limit
INS	Insufficient sample for this test
NA	Test not required
NT	Not tested
DOL	Samples rejected due to particulate overload (air filters only)
RFD	Samples rejected due to filter damage (air filters only)
RUD	Samples rejected due to uneven deposition (air filters only)
##	Indicates a laboratory acceptance criteria outlier, for further details, see Result Comments and/or QC Comments

Quality Control Definitions

Blank

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, and is determined by processing solvents and reagents in exactly the same manner as for samples.

Surrogate Spike

Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

LCS (Laboratory Control Sample)

This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Matrix Spike

A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

Duplicate

This is the complete duplicate analysis of a sample from the process batch. The sample selected should be one where the analyte concentration is easily measurable.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria. Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction. Spikes for Physical and Aggregate Tests are not applicable. For VOCs in water samples, three vials are required for duplicate or spike analysis.

General Acceptance Criteria (GAC) - Analyte specific criteria applies for some analytes and is reflected in QC recovery tables.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% - see ELN-P05 QAQC tables for details (available on request); <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was typically insufficient in order to satisfy laboratory QA/QC protocols.

Miscellaneous Information

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached. We have taken the sampling date as being the date received at the laboratory.

Two significant figures are reported for the majority of tests and with a high degree of confidence, for results <10*PQL, the second significant figure may be in doubt i.e. has a relatively high degree of uncertainty and is provided for information only.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS where sediment/solids are included by default.

Urine Analysis - The BEI values listed are taken from the 2022 edition of TLVs and BEIs Threshold Limits by ACGIH.

Air volume measurements are not covered by Envirolab's NATA accreditation.

Data Quality Assessment Summary MGA0261

Client Details

Client	JK Environments
Your Reference	E32976BT2
Date Issued	24/01/2025

Recommended Holding Time Compliance

No recommended holding time exceedances

Quality Control and QC Frequency

QC Type	Compliant	Details
Blank	Yes	No Outliers
LCS	Yes	No Outliers
Duplicates	Yes	No Outliers
Matrix Spike	Yes	No Outliers
Surrogates / Extracted Internal Standards	Yes	No Outliers
QC Frequency	Yes	No Outliers

Surrogates/Extracted Internal Standards, Duplicates and/or Matrix Spikes are not always relevant/applicable to certain analyses and matrices. Therefore, said QC measures are deemed compliant in these situations by default. See Laboratory Acceptance Criteria for more information

Data Quality Assessment Summary MGA0261

Recommended Holding Time Compliance

Analysis	Sample Number(s)	Date Sampled	Date Extracted	Date Analysed	Compliant	
vTRH&MBTEXN Soil	1	16/01/2025	22/01/2025	24/01/2025	Yes	
sTRH Soil	1	16/01/2025	22/01/2025	23/01/2025	Yes	
PAH Soil	1	16/01/2025	22/01/2025	24/01/2025	Yes	
OCP Soil	1	16/01/2025	22/01/2025	24/01/2025	Yes	
OPP (21 list) Soil	1	16/01/2025	22/01/2025	24/01/2025	Yes	
PCB Soil	1	16/01/2025	22/01/2025	24/01/2025	Yes	
Metals Soil	1	16/01/2025	22/01/2025	24/01/2025	Yes	
Metals-Hg Soil	1	16/01/2025	22/01/2025	24/01/2025	Yes	
Moisture Soil	1	16/01/2025	22/01/2025	24/01/2025	Yes	

ORG-023_F1_TOT | Volatile TRH and BTEX (Soil) | Batch BGA2879

Analyte	Units	PQL	Blank	DUP1 BGA2879-DUP1# Samp QC RPD %	DUP2 BGA2879-DUP2# Samp QC RPD %	LCS %	Spike % BGA2879-MS2#
TRH C6-C9	mg/kg	25	<25	<25 <25 [NA]	<25 <25 [NA]	99.3	97.1
TRH C6-C10	mg/kg	25	<25	<25 <25 [NA]	<25 <25 [NA]	101	101
TRH C6-C10 less BTEX (F1)	mg/kg	25	<25	<25 <25 [NA]	<25 <25 [NA]	[NA]	[NA]
Methyl tert butyl ether (MTBE)	mg/kg	0.50	<0.50	<0.50 <0.50 [NA]	<0.50 <0.50 [NA]	[NA]	[NA]
Benzene	mg/kg	0.20	<0.20	<0.20 <0.20 [NA]	<0.20 <0.20 [NA]	86.5	87.7
Toluene	mg/kg	0.50	<0.50	<0.50 <0.50 [NA]	<0.50 <0.50 [NA]	92.8	97.0
Ethylbenzene	mg/kg	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	90.9	95.5
meta+para Xylene	mg/kg	2.0	<2.0	<2.0 <2.0 [NA]	<2.0 <2.0 [NA]	95.1	101
ortho-Xylene	mg/kg	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	88.3	97.9
Total Xylene	mg/kg	3.0	<3.0	<3.0 <3.0 [NA]	<3.0 <3.0 [NA]	[NA]	[NA]
Naphthalene (value used in F2 calc)	mg/kg	1.0	<1.0	<1.0 <1.0 [NA]	<1.0 <1.0 [NA]	[NA]	[NA]
Surrogate aaa-Trifluorotoluene	%		94.3	86.8 87.6	85.8 86.8	96.1	93.3

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

ORG-020 | Semi-volatile TRH (Soil) | Batch BGA2880

Analyte	Units	PQL	Blank	DUP1 BGA2880-DUP1# Samp QC RPD %	DUP2 BGA2880-DUP2# Samp QC RPD %	LCS %	Spike % BGA2880-MS1#
TRH C10-C14	mg/kg	50	<50	<50 <50 [NA]		106	102
TRH C15-C28	mg/kg	100	<100	<100 <100 [NA]		85.5	86.2
TRH C29-C36	mg/kg	100	<100	<100 <100 [NA]		99.0	102
TRH >C10-C16	mg/kg	50	<50	<50 <50 [NA]		84.6	82.4
TRH >C16-C34 (F3)	mg/kg	100	<100	<100 <100 [NA]		87.8	88.9
TRH >C34-C40 (F4)	mg/kg	100	<100	<100 <100 [NA]		95.0	97.7
Surrogate o-Terphenyl	%		70.9	70.1 69.9		134	132
				DUP3	DUP4	LCS %	
Analyte	Units	PQL	Blank	BGA2880-DUP3#	BGA2880-DUP4#		
				Samp QC RPD %	Samp QC RPD %		
TRH C10-C14	mg/kg	50		<50 <50 [NA]		[NA]	
TRH C15-C28	mg/kg	100		<100 <100 [NA]		[NA]	
TRH C29-C36	mg/kg	100		102 139 [NA]		[NA]	
TRH >C10-C16	mg/kg	50		<50 <50 [NA]		[NA]	
TRH >C16-C34 (F3)	mg/kg	100		<100 122 [NA]		[NA]	
TRH >C34-C40 (F4)	mg/kg	100		<100 <100 [NA]		[NA]	

64.9/67.4

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

%

Surrogate o-Terphenyl

ORG-022_PAH | Polycyclic Aromatic Hydrocarbons (Soil) | Batch BGA2880

Australia	11	POL	Disala	DUP1 BGA2880-DUP1#	DUP2 BGA2880-DUP2#	LCS %	Spike % BGA2880-MS2#
Analyte	Units	PQL	Blank	Samp QC RPD %	Samp QC RPD %		DGA2000-M32#
Naphthalene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		104	106
Acenaphthylene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Acenaphthene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		112	114
Fluorene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		107	110
Phenanthrene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		106	109
Anthracene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Fluoranthene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		107	112
Pyrene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		112	116
Benzo(a)anthracene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Chrysene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		103	107
Benzo(b,j,k)fluoranthene	mg/kg	0.20	<0.20	<0.20 <0.20 [NA]		[NA]	[NA]
Benzo(a)pyrene	mg/kg	0.050	<0.050	<0.050 <0.050 [NA]		97.4	107
Indeno(1,2,3-c,d)pyrene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Dibenzo(a,h)anthracene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Benzo(g,h,i)perylene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Surrogate p-Terphenyl-D14	%		114	111/111		116	114

				DUP3	DUP4	LCS %	
Analyte	Units	PQL	Blank	BGA2880-DUP3#	BGA2880-DUP4#		
				Samp QC RPD %	Samp QC RPD %		
Naphthalene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Acenaphthylene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Acenaphthene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Fluorene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Phenanthrene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Anthracene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Fluoranthene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Pyrene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Benzo(a)anthracene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Chrysene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Benzo(b,j,k)fluoranthene	mg/kg	0.2		<0.20 <0.20 [NA]		[NA]	
Benzo(a)pyrene	mg/kg	0.05		<0.050 <0.050 [NA]		[NA]	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Dibenzo(a,h)anthracene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Benzo(g,h,i)perylene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Surrogate p-Terphenyl-D14	%			120/123		[NA]	

ORG-022_OC|Organochlorine Pesticides (Soil) | Batch BGA2880

Analyte	Units	PQL	Blank	DUP1 BGA2880-DUP1# Samp QC RPD %	DUP2 BGA2880-DUP2# Samp QC RPD %	LCS %	Spike % BGA2880-MS2#
alpha-BHC	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		98.1	104
Hexachlorobenzene	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
beta-BHC	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		93.3	98.0
gamma-BHC	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
delta-BHC	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Heptachlor	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		110	113
Aldrin	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		106	109
Heptachlor epoxide	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		113	115
trans-Chlordane	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
cis-Chlordane	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Endosulfan I	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
4,4'-DDE	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		117	120
Dieldrin	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		103	107
Endrin	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		92.4	99.5
4,4'-DDD	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		111	117
Endosulfan II	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Endrin aldehyde	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
4,4'-DDT	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Endosulfan sulfate	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		113	117
Endrin ketone	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Methoxychlor	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Mirex	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Surrogate 4-chloro-3-nitrobenzotrifluoride	%		84.1	81.2/83.1		84.2	85.3

Analyte	Units	PQL	Blank	DUP3 BGA2880-DUP3# Samp QC RPD %	DUP4 BGA2880-DUP4# Samp QC RPD %	LCS %	
alpha-BHC	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Hexachlorobenzene	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
beta-BHC	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
gamma-BHC	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
delta-BHC	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Heptachlor	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Aldrin	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Heptachlor epoxide	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
trans-Chlordane	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
cis-Chlordane	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Endosulfan I	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
4,4'-DDE	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Dieldrin	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Endrin	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
4,4'-DDD	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Endosulfan II	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Endrin aldehyde	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
4,4'-DDT	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Endosulfan sulfate	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Endrin ketone	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Methoxychlor	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Mirex	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Surrogate 4-chloro-3-nitrobenzotrifluoride	%			81.4/84.6		[NA]	

ORG-022 | Organophosphorus Pesticides (Soil) | Batch BGA2880

Analyte	Units	PQL	Blank	DUP1 BGA2880-DUP1# Samp QC RPD %	DUP2 BGA2880-DUP2# Samp QC RPD %	LCS %	Spike % BGA2880-MS2#
Dichlorvos	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		103	102
Dimethoate	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Diazinon	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Chlorpyrifos-methyl	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		105	106
Ronnel	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		113	114
Fenitrothion	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		86.8	93.9
Malathion	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		98.4	104
Chlorpyrifos	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		103	105
Parathion	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		83.9	89.9
Bromophos-ethyl	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Ethion	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		86.4	92.1
Coumaphos	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Disulfoton	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Fenamiphos	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Fenthion	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Methidathion	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Mevinphos	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Parathion-methyl	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Phorate	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Phosalone	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Azinphos-methyl	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Surrogate 4-chloro-3-nitrobenzotrifluoride	%		84.1	81.2/83.1		84.2	85.3

Analyte	Units	PQL	Blank	DUP3 BGA2880-DUP3# Samp QC RPD %	DUP4 BGA2880-DUP4# Samp QC RPD %	LCS %	
Dichlorvos	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Dimethoate	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Diazinon	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Chlorpyrifos-methyl	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Ronnel	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Fenitrothion	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Malathion	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Chlorpyrifos	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Parathion	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Bromophos-ethyl	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Ethion	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Coumaphos	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Disulfoton	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Fenamiphos	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Fenthion	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Methidathion	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Mevinphos	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Parathion-methyl	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Phorate	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Phosalone	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Azinphos-methyl	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Surrogate 4-chloro-3-nitrobenzotrifluoride	%			81.4/84.6		[NA]	

ORG-021/022/025_PCB | Polychlorinated Biphenyls (Soil) | Batch BGA2880

Analyte	Units	PQL	Blank	DUP1 BGA2880-DUP1# Samp QC RPD %	DUP2 BGA2880-DUP2# Samp QC RPD %	LCS %	Spike % BGA2880-MS2#
Aroclor 1016	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Aroclor 1221	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Aroclor 1232	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Aroclor 1242	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Aroclor 1248	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Aroclor 1254	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
Aroclor 1260	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		[NA]	[NA]
PCB C103	mg/kg			0.00 00.0 [NA]		138	137
Surrogate 2-Fluorobiphenyl	%		96.3	88.9 90.9		96.1	95.0

Analyte	Units	PQL	Blank	DUP3 BGA2880-DUP3# Samp QC RPD %	DUP4 BGA2880-DUP4# Samp QC RPD %	LCS %	
Aroclor 1016	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Aroclor 1221	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Aroclor 1232	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Aroclor 1242	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Aroclor 1248	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Aroclor 1254	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
Aroclor 1260	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]	
PCB C103	mg/kg			0.00 0.00 [NA]		[NA]	
Surrogate 2-Fluorobiphenyl	%			89.2/91.8		[NA]	

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

METALS-020 | Acid Extractable Metals (Soil) | Batch BGA2878

Analyte	Units	PQL	Blank	DUP1 BGA2878-DUP1# Samp QC RPD %	DUP2 BGA2878-DUP2# Samp OC RPD %	LCS %	Spike % BGA2878-MS1#
Arsenic	mg/kg	4.0	<4.0	<4.0 <4.0 [NA]		107	100
Cadmium	mg/kg	0.40	<0.40	<0.40 <0.40 [NA]		96.2	82.4
Chromium	mg/kg	1.0	<1.0	33.3 33.4 0.215		97.6	91.9
Copper	mg/kg	1.0	<1.0	14.0 14.6 4.59		100	114
Lead	mg/kg	1.0	<1.0	13.2 13.6 3.00		101	84.0
Mercury	mg/kg	0.10	<0.10	<0.10 <0.10 [NA]		102	99.4
Nickel	mg/kg	1.0	<1.0	13.8 15.5 11.4		96.5	96.0
Zinc	mg/kg	1.0	<1.0	19.8 20.9 5.28		96.4	85.8

				DUP3	DUP4	LCS %
Analyte	Units	PQL	Blank	BGA2878-DUP3#	BGA2878-DUP4#	
				Samp QC RPD %	Samp QC RPD %	
Arsenic	mg/kg	4		5.71 5.79 [NA]		[NA]
Cadmium	mg/kg	0.4		<0.40 <0.40 [NA]		[NA]
Chromium	mg/kg	1		23.4 25.0 6.94		[NA]
Copper	mg/kg	1		16.8 15.2 10.4		[NA]
Lead	mg/kg	1		26.2 27.7 5.36		[NA]
Mercury	mg/kg	0.1		<0.10 <0.10 [NA]		[NA]
Nickel	mg/kg	1		16.3 17.6 7.44		[NA]
Zinc	mg/kg	1		37.1 36.2 2.43		[NA]

The QC reported was not specifically part of this workorder but formed part of the QC process batch.

INORG-008 | Inorganics - Moisture (Soil) | Batch BGA2874

				DUP1	DUP2	LCS %
Analyte	Units	PQL	Blank	BGA2874-DUP1#	BGA2874-DUP2#	
-		-		Samp QC RPD %	Samp QC RPD %	
Moisture	%	0.1		12.6 10.1 21.4	11.4 11.1 2.49	[NA]

www.envirolab.com.au

Sample Receipt Advice MGA0261

Client Details

Client	JK Environments
Attention	Katrina Taylor
Sample Login Details	
Your Reference	E32976BT2
Envirolab Reference	MGA0261
Date Sample Received	21/01/2025
Date Instructions Received	21/01/2025
Date Final Results Expected	28/01/2025
Sample Condition	
Samples received in appropriate condition for analysis	Yes
Number of Samples	1 Soil
Turnaround Time	4 Days
Temperatures / Cooling Methods	19.8°C Ice Pack
Additional Info	

Sample storage - waters are routinely disposed at approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Where no sampling date has been supplied for some or all samples, the date of sample receipt has been used as the associated sampling date. The sampling dates are used to assess compliance to recommended Technical Holding Times.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default).

Please direct any queries to:

Chris De Luca			Iburn
Phone	03 9763 2500	Phone	03 9763 2500
Email	cdeluca@envirolab.com.au	Email	tmilburn@envirolab.com.au

Analysis underway, details on the following page

Sample Receipt Advice MGA0261

Analysis Grid

The • indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Suite Analyses

Suite Details

Combination 6 | Soil

Suite Name

vTRH&MBTEXN, sTRH, PAH, OCP, OPP (21 list), PCB, As, Cd, Cr, Cu, Hg, Ni, Pb, Zn

SAMPLE AND CHAIN OF CUSTODY FORM

<u>TO:</u> ENVIROLAB S 12 ASHLEY ST CHATSWOOD P: (02) 99106 F: (02) 99106 Attention: Ai	TREET D NSW 2 200 201			JKE Job Number: Date Resi Required Page:	ults	E32976BT2 STANDARD					FROM: JKEnvironments REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001 Attention: Katrina Taylor							
						Contraction of the second		<u>KTaylor@jkenvironments.com.au</u>										
ocation:	Kogar				is an		-	_		Sar	mple Pres			n Ice	_			
Sampler:	VR/JT	L	1		312				-	-	les	ts Requi	rea	1	-		_	
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	#6a NEPM	#3	Asbestos (detection)	9#	ВТЕХ							
5/01/2025	1	вн203	0.1-0.2	G, A	0.2	F: silty sand	x											
5/01/2025	2	BH203	0.3-0.4	G, A	0	F: silty sandy clay		x					-					
5/01/2025	3	BH203	0.8-1	G, A	0	SANDSTONE											-	
6/01/2025	4	BH207	0-0.1	G, A	0	F: silty sand	x											
6/01/2025	5	BH207	0.2-0.3	G	0.1	SANDSTONE												
6/01/2025	þ	BH210	0.05-0.1	G, A	1	F: gravel	x							-				
6/01/2025	1	BH210	0.2-0.3	G, A	0.5	F: silty sand												
6/01/2025	Ŷ	BH210	0.55-0.6	G, A	1.8	F: silty sandy clay		x										
6/01/2025	9	BH211	0.05-0.1	G, A	0.1	F: gravel								1		Envi	rolah	Services
6/01/2025	10	BH211	0.2-0.3	G, A	0	F: silty sand	x	d'					Crivi	-	Cro	pulon S	outh	//C 3136
6/01/2025	11	BH212	0.1-0.15	G, A	0	F: gravel	x						Job	No:	MO	\$A	OK	63 2500
6/01/2025	12	BH212	0.2-0.4	G, A	0	F: silty sand							Date	Rece	eved:	21/1	125	í
16/01/2025	13	BH214	0.05-0.15	G, A	0.1	F: gravel							Time	Rece	eived:	12:	38	m
16/01/2025	14	BH214	0.2-0.3	G, A	0.4	F: silty sand	x						Tem	Co	1/m	lient	>	19.
16/01/2025	11	BH214	0.3-0.4	G, A	0.5	F: silty sand		x					Cool Secu	ing: lo		roker	n/Non	
15/01/2025	16	BH215	0-0.1	G, A	0	F: silty sand	x							T	T			
15/01/2025	17	BH215	0.2-0.3	G, A	0	F: silty sand		x										
15/01/2025	18	BH216	0-0.1	G, A	0	F: silty sand	x											
15/01/2025	9	BH216	0.1-0.2	G, A	0	F: silty sand							5		Env	rolab	Servi	es
15/01/2025	20	BH216	0.5-0.7	G, A	0	F: silty sand							VROL		hatsv	had A	shiey SW 2	67
15/01/2025	21	BH216	1-1.3	G, A	0	F: sandy clay	-	x				Jo	b No:	27	Ph	(02) 9	910 6	200
15/01/2025	22	BH216	1.3-1.4	G	0	F: sandy clay						1.50	1	1	171	117		
15/01/2025	12	BH217	0-0.1	G, A	0	F: silty sand	x					Da Tir	te Rei ne Re	-				
15/01/2025	24	BH217	0.2-0.3	G, A	0.2	F: silty sand		x				Re	ceiver	By:	111	7		
15/01/2025	20	BH217	0.2-0.5	G, A	0.8	F: silty sand							oling:	ice/to	enac			
Remarks (co			imits required	d):		1	G - 2! A - Zi P - Pl	50mg plock astic	ntaine Glass Asbe Bag	Jar		Se	ourity	hotas		ken/N	DDA	
Relinquished	10	k Fli	(11)	201	1123	5 1130-	Time				Q-W	а ву: 11(10	K		Date 17	1/17)	

TO: ENVIROLAB SERVICES PTY LTD 12 ASHLEY STREET CHATSWOOD NSW 2067 P: (02) 99106200 F: (02) 99106201 Attention: Aileen Location: Kogarah				JKE Job Number: Date Res Required Page:	ults	ND CHAIN OF E32976BT2 STANDARD 2 of 2	CUST		<u>Y FO</u>	RIV	REAR MACC P: 02-1 Attent	OF 11 UARI 9888 Stion:	5 WIC E PAR 5000	KS RO K, NSV	AD N 2113 F: 02 Catrina	-9888 : Taylo	5001 I r	
			879 H						Sa	mple Pr	_		_	_	nts.cor	n.au	-	
Sampler:	VR/JT	and the second s	1. T. 1. T. 1.									equire						
Date Sampled	Lab Ref:	Sample Number	Depth (m)	Sample Container	PID	Sample Description	#6a NEPM	#3	Asbestos (detection)	9#	BTEX							
15/01/2025	26	BH219	0-0.1	G, A	0	F: silty sand	x											
15/01/2025	27	BH219	0.2-0.3	G, A	0.1	F: silty sand												
15/01/2025	28	BH219	0.5-0.6	G, A	0.3	F: silty sand	x											
15/01/2025	29	BH219	0.7-1	G, A	1.7	F: silty sand												
15/01/2025	30	SDUP201	-	G	NA	DUPLICATE				x								
16/01/2025	SIG	SDUP202		G	NA	DUPLICATE			1	x	Sec. 1	Ple	ease se	end to	Enviro	olab VI	с	
15/01/2025	31	TS-S201	-	v	NA	TRIP SPIKE					x							
15/01/2025	32	TB-S201		v	NA	TRIP BLANK		x		-								
16/01/2025	33	FR-HA-201		#3	NA	RINSATE		x			-							
17/01/2025	NL	FR-SPT-201		#3	NA	RINSATE	1	x										
							1			1			1000					
							1									-		
				-							-						-	
							-							-			-	
							1	-					-				-	
	-						-					-				-	-	
							-	-		-		-	-	-			_	-
							-	-			-		-			-	_	
	-						-			-	-		-				_	
-								-					-					
					-					_	-							
	-				-			-		-		-				-		-
					_								3					
Remarks (cor	nments	Pleas	mits required se send to Env 201 broke dur	rirolab VIC			G - 25	0mg olock	ntaine Glass J Asbest	ar	ag				: -	076	11	
Relinquished		ELIQO		Date:	1.5	1130-	Time:		ag		Receive	ed By:			11	Date:	N	

CERTIFICATE OF ANALYSIS 372949

Client Details	
Client	JK Environments
Attention	Katrina Taylor
Address	PO Box 976, North Ryde BC, NSW, 1670

Sample Details	
Your Reference	E32976BT2, Kogarah
Number of Samples	6 Water
Date samples received	13/02/2025
Date completed instructions received	13/02/2025

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details							
Date results requested by	20/02/2025						
Date of Issue	27/02/2025						
Reissue Details	This report replaces R00 created on 20/02/2025 due to: Sample ID Amended (Client Request)						
NATA Accreditation Number 2901. This document shall not be reproduced except in full.							
Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *							

Results Approved By

Giovanni Agosti, Group Technical Manager Liam Timmins, Organics Supervisor Nancy Zhang, Laboratory Manager, Sydney Sean McAlary, Senior Chemist Tabitha Roberts, Senior Chemist Timothy Toll, Senior Chemist <u>Authorised By</u> Nancy Zhang, Laboratory Manager

VOCs in water					
Our Reference		372949-1	372949-2	372949-3	372949-4
Your Reference	UNITS	MW203	MW207	MW208	GWDUP-201
Date Sampled		13/02/2025	13/02/2025	13/02/2025	13/02/2025
Type of sample		Water	Water	Water	Water
Date Extracted	-	14/02/2025	14/02/2025	14/02/2025	14/02/2025
Date Analysed	-	15/02/2025	15/02/2025	15/02/2025	15/02/2025
Dichlorodifluoromethane	µg/L	<10	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1	<1
Chloroform	µg/L	<1	<1	4	<1
2,2-dichloropropane	µg/L	<1	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1	<1
Cyclohexane	µg/L	<1	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1	<1
Benzene	µg/L	<1	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1	<1
Trichloroethene	µg/L	<1	<1	<1	<1
Bromodichloromethane	µg/L	<1	<1	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1
1,3-dichloropropane	µg/L	<1	<1	<1	<1
Dibromochloromethane	µg/L	<1	<1	<1	<1
1,2-dibromoethane	µg/L	<1	<1	<1	<1
Tetrachloroethene	µg/L	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1	<1	<1
Chlorobenzene	µg/L	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1

VOCs in water					
Our Reference		372949-1	372949-2	372949-3	372949-4
Your Reference	UNITS	MW203	MW207	MW208	GWDUP-201
Date Sampled		13/02/2025	13/02/2025	13/02/2025	13/02/2025
Type of sample		Water	Water	Water	Water
Bromoform	µg/L	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2
Styrene	µg/L	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1	<1
o-xylene	µg/L	<1	<1	<1	<1
1,2,3-trichloropropane	µg/L	<1	<1	<1	<1
Isopropylbenzene	µg/L	<1	<1	<1	<1
Bromobenzene	µg/L	<1	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1	<1
Hexachlorobutadiene	μg/L	<1	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	113	107	107	105
Surrogate Toluene-d8	%	96	96	96	96
Surrogate 4-Bromofluorobenzene	%	103	103	107	106

vTRH(C6-C10)/BTEXN in Water						
Our Reference		372949-1	372949-2	372949-3	372949-4	372949-5
Your Reference	UNITS	MW203	MW207	MW208	GWDUP-201	TB-201
Date Sampled		13/02/2025	13/02/2025	13/02/2025	13/02/2025	13/02/2025
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	14/02/2025	14/02/2025	14/02/2025	14/02/2025	14/02/2025
Date analysed	-	15/02/2025	15/02/2025	15/02/2025	15/02/2025	15/02/2025
TRH C ₆ - C ₉	µg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10	<10	<10
Benzene	µg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	113	107	107	105	94
Surrogate Toluene-d8	%	96	96	96	96	95
Surrogate 4-Bromofluorobenzene	%	103	103	107	106	102

vTRH(C6-C10)/BTEXN in Water		
Our Reference		372949-6
Your Reference	UNITS	TS-201
Date Sampled		13/02/2025
Type of sample		Water
Date extracted	-	14/02/2025
Date analysed	-	15/02/2025
Benzene	μg/L	111%
Toluene	µg/L	111%
Ethylbenzene	μg/L	106%
m+p-xylene	µg/L	106%
o-xylene	μg/L	107%
Surrogate Dibromofluoromethane	%	104
Surrogate Toluene-d8	%	104
Surrogate 4-Bromofluorobenzene	%	100

svTRH (C10-C40) in Water						
Our Reference		372949-1	372949-2	372949-3	372949-4	372949-5
Your Reference	UNITS	MW203	MW207	MW208	GWDUP-201	TB-201
Date Sampled		13/02/2025	13/02/2025	13/02/2025	13/02/2025	13/02/2025
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	18/02/2025	18/02/2025	18/02/2025	18/02/2025	18/02/2025
Date analysed	-	19/02/2025	19/02/2025	19/02/2025	19/02/2025	19/02/2025
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	55	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	µg/L	<50	<50	60	<50	<50
TRH >C10 - C16	µg/L	<50	<50	62	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50	<50	62	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	120	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	µg/L	<50	<50	180	<50	<50
Surrogate o-Terphenyl	%	87	103	104	107	100

PAHs in Water						
Our Reference		372949-1	372949-2	372949-3	372949-4	372949-5
Your Reference	UNITS	MW203	MW207	MW208	GWDUP-201	TB-201
Date Sampled		13/02/2025	13/02/2025	13/02/2025	13/02/2025	13/02/2025
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	18/02/2025	18/02/2025	18/02/2025	18/02/2025	18/02/2025
Date analysed	-	19/02/2025	19/02/2025	19/02/2025	19/02/2025	19/02/2025
Naphthalene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	μg/L	<0.1	<0.1	0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	0.9	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	0.2	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	1.2	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	1.2	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	0.5	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	0.6	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	0.7	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	0.4	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	0.2	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	0.3	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	0.6	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	6.4	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	73	83	74	83	87

HM in water - dissolved					
Our Reference		372949-1	372949-2	372949-3	372949-4
Your Reference	UNITS	MW203	MW207	MW208	GWDUP-201
Date Sampled		13/02/2025	13/02/2025	13/02/2025	13/02/2025
Type of sample		Water	Water	Water	Water
Date prepared	-	17/02/2025	17/02/2025	17/02/2025	17/02/2025
Date analysed	-	17/02/2025	17/02/2025	17/02/2025	17/02/2025
Arsenic-Dissolved	μg/L	1	5	<1	5
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	2	2	1	2
Copper-Dissolved	µg/L	<1	<1	2	<1
Lead-Dissolved	µg/L	<1	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	1	3	7	3
Zinc-Dissolved	µg/L	4	4	71	6

HM in water - total		
Our Reference		372949-5
Your Reference	UNITS	TB-201
Date Sampled		13/02/2025
Type of sample		Water
Date prepared	-	17/02/2025
Date analysed	-	17/02/2025
Arsenic-Total	µg/L	<1
Cadmium-Total	µg/L	<0.1
Chromium-Total	μg/L	<1
Copper-Total	µg/L	<1
Lead-Total	µg/L	<1
Mercury-Total	µg/L	<0.05
Nickel-Total	µg/L	<1
Zinc-Total	µg/L	<1

PFAS in Waters Trace Extended						
Our Reference		372949-1	372949-2	372949-3	372949-4	372949-5
Your Reference	UNITS	MW203	MW207	MW208	GWDUP-201	TB-201
Date Sampled		13/02/2025	13/02/2025	13/02/2025	13/02/2025	13/02/2025
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	17/02/2025	17/02/2025	18/02/2025	18/02/2025	18/02/2025
Date analysed	-	17/02/2025	17/02/2025	18/02/2025	18/02/2025	18/02/2025
Perfluorobutanesulfonic acid	µg/L	0.002	0.001	0.002	0.001	<0.0004
Perfluoropentanesulfonic acid	µg/L	<0.001	<0.001	0.001	<0.001	<0.001
Perfluorohexanesulfonic acid - PFHxS	µg/L	<0.0002	<0.0002	0.0037	0.001	<0.0002
Perfluoroheptanesulfonic acid	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Perfluorooctanesulfonic acid PFOS	μg/L	0.0029	<0.0002	0.0044	<0.0002	<0.0002
Perfluorodecanesulfonic acid	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorobutanoic acid	µg/L	<0.02	<0.02	<0.02	<0.02	<0.002
Perfluoropentanoic acid	µg/L	<0.01	<0.01	0.005	<0.01	<0.002
Perfluorohexanoic acid	µg/L	0.003	0.002	0.0096	0.004	<0.0004
Perfluoroheptanoic acid	µg/L	0.002	0.002	0.0049	0.001	<0.0004
Perfluorooctanoic acid PFOA	μg/L	0.0022	0.002	0.0048	0.002	<0.0002
Perfluorononanoic acid	µg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Perfluorodecanoic acid	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluoroundecanoic acid	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorododecanoic acid	µg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Perfluorotridecanoic acid	µg/L	<0.01	<0.01	<0.01	<0.01	<0.01
Perfluorotetradecanoic acid	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
4:2 FTS	µg/L	<0.001	<0.001	<0.002	<0.002	<0.001
6:2 FTS	µg/L	0.003	0.001	<0.0004	0.002	<0.0004
8:2 FTS	µg/L	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004
10:2 FTS	μg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Perfluorooctane sulfonamide	µg/L	<0.01	<0.01	<0.02	<0.02	<0.01
N-Methyl perfluorooctane sulfonamide	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Ethyl perfluorooctanesulfon amide	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
N-Me perfluorooctanesulfonamid oethanol	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
N-Et perfluorooctanesulfonamid oethanol	µg/L	<0.5	<0.5	<0.5	<0.5	<0.5
MePerfluorooctanesulf- amid oacetic acid	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
EtPerfluorooctanesulf- amid oacetic acid	µg/L	<0.002	<0.002	<0.002	<0.002	<0.002
Surrogate ¹³ C ₈ PFOS	%	96	107	116	119	100
Surrogate ¹³ C ₂ PFOA	%	97	92	90	86	89
Extracted ISTD ¹³ C ₃ PFBS	%	88	89	75	69	69
Extracted ISTD ¹⁸ O ₂ PFHxS	%	103	103	80	74	81
Extracted ISTD ¹³ C ₄ PFOS	%	75	69	100	97	92
Extracted ISTD ¹³ C ₄ PFBA	%	#	#	#	#	88

PFAS in Waters Trace Extended						
Our Reference		372949-1	372949-2	372949-3	372949-4	372949-5
Your Reference	UNITS	MW203	MW207	MW208	GWDUP-201	TB-201
Date Sampled		13/02/2025	13/02/2025	13/02/2025	13/02/2025	13/02/2025
Type of sample		Water	Water	Water	Water	Water
Extracted ISTD ¹³ C ₃ PFPeA	%	31	36	65	31	86
Extracted ISTD ¹³ C ₂ PFHxA	%	52	58	56	47	84
Extracted ISTD ¹³ C ₄ PFHpA	%	64	75	77	70	86
Extracted ISTD ¹³ C ₄ PFOA	%	84	91	91	86	88
Extracted ISTD ¹³ C ₅ PFNA	%	89	93	89	84	77
Extracted ISTD ¹³ C ₂ PFDA	%	103	102	119	115	92
Extracted ISTD ¹³ C ₂ PFUnDA	%	96	85	103	101	85
Extracted ISTD ¹³ C ₂ PFDoDA	%	77	71	93	93	88
Extracted ISTD ¹³ C ₂ PFTeDA	%	94	87	84	103	58
Extracted ISTD ¹³ C ₂ 4:2FTS	%	67	70	48	44	75
Extracted ISTD ¹³ C ₂ 6:2FTS	%	120	129	78	72	75
Extracted ISTD ¹³ C ₂ 8:2FTS	%	133	125	115	107	97
Extracted ISTD ¹³ C ₈ FOSA	%	95	103	37	39	57
Extracted ISTD d ₃ N MeFOSA	%	118	113	113	118	114
Extracted ISTD d₅ N EtFOSA	%	119	114	115	114	113
Extracted ISTD d7 N MeFOSE	%	115	113	117	119	116
Extracted ISTD d ₉ N EtFOSE	%	112	115	112	110	107
Extracted ISTD d ₃ N MeFOSAA	%	90	81	#	139	106
Extracted ISTD d₅ N EtFOSAA	%	145	130	155	129	113
Total Positive PFHxS & PFOS	μg/L	0.0029	<0.0002	0.0081	0.001	<0.0002
Total Positive PFOS & PFOA	μg/L	0.0051	0.002	0.0092	0.002	<0.0002
Total Positive PFAS	μg/L	0.014	0.0081	0.036	0.010	<0.0002

Method ID	Methodology Summary
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.
	Where salts (oxides, chlorides etc.) are calculated from the element concentration stoichiometrically there is no guarantee that the salt form is completely soluble in the acids used in the preparation.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-029	Soil samples are extracted with basified Methanol. Waters and soil extracts are directly injected and/or concentrated/extracted using SPE. TCLPs/ASLP leachates are centrifuged, the supernatant is then analysed (including amendment with solvent) - as per the option in AS4439.3.
	Analysis is undertaken with LC-MS/MS.
	PFAS results include the sum of branched and linear isomers where applicable.
	Please note that PFAS results are corrected for Extracted Internal Standards (QSM 5.4 Table B-15 terminology), which are mass labelled analytes added prior to sample preparation to assess matrix effects and verify processing of the sample. PFAS analytes without a commercially available mass labelled analogue are corrected vs a closely eluting mass labelled PFAS compound. Surrogates are also reported, in this context they are mass labelled PFAS compounds added prior to extraction but are used as monitoring compounds only (not used for result correction). Envicarb (or similar) is used discretionally to remove interfering matrix components.
	Please contact the laboratory if estimates of Measurement Uncertainty are required as per WA DER.

QUALI	TY CONTROL	.: VOCs i	n water			Du	uplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date Extracted	· ·			14/02/2025	[NT]		[NT]	[NT]	14/02/2025	
Date Analysed	-			15/02/2025	[NT]		[NT]	[NT]	15/02/2025	
Dichlorodifluoromethane	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloromethane	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Vinyl Chloride	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Bromomethane	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Chloroethane	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
Trichlorofluoromethane	µg/L	10	Org-023	<10	[NT]		[NT]	[NT]	[NT]	
1,1-Dichloroethene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trans-1,2-dichloroethene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1-dichloroethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
Cis-1,2-dichloroethene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromochloromethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chloroform	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
2,2-dichloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloroethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	100	
1,1,1-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	102	
1,1-dichloropropene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Cyclohexane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Carbon tetrachloride	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	77	
Dibromomethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Trichloroethene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	87	
Bromodichloromethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	107	
trans-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
cis-1,3-dichloropropene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2-trichloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	78	
1,3-dichloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Dibromochloromethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	112	
1,2-dibromoethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tetrachloroethene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	99	
1,1,1,2-tetrachloroethane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Chlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Ethylbenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	76	
Bromoform	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
m+p-xylene	µg/L	2	Org-023	<2	[NT]		[NT]	[NT]	80	
Styrene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,1,2,2-tetrachloroethane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	

QUALIT	Y CONTROL	: VOCs i	n water			Spike Red	Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	79	
1,2,3-trichloropropane	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Isopropylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Bromobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
n-propyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
2-chlorotoluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
4-chlorotoluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3,5-trimethyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Tert-butyl benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trimethyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,3-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Sec-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,4-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
4-isopropyl toluene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dichlorobenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
n-butyl benzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2-dibromo-3-chloropropane	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,4-trichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Hexachlorobutadiene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
1,2,3-trichlorobenzene	µg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	103	[NT]		[NT]	[NT]	103	
Surrogate Toluene-d8	%		Org-023	95	[NT]		[NT]	[NT]	99	
Surrogate 4-Bromofluorobenzene	%		Org-023	104	[NT]		[NT]	[NT]	101	

QUALITY CONTI	ROL: vTRH(C6-C10)/E	3TEXN in Water			Du	ıplicate		Spike Red	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			14/02/2025	[NT]		[NT]	[NT]	14/02/2025	
Date analysed	-			15/02/2025	[NT]		[NT]	[NT]	15/02/2025	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	78	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	[NT]		[NT]	[NT]	78	
Benzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	77	
Toluene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	78	
Ethylbenzene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	76	
m+p-xylene	μg/L	2	Org-023	<2	[NT]		[NT]	[NT]	80	
o-xylene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	79	
Naphthalene	μg/L	1	Org-023	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate Dibromofluoromethane	%		Org-023	103	[NT]		[NT]	[NT]	103	
Surrogate Toluene-d8	%		Org-023	95	[NT]		[NT]	[NT]	99	
Surrogate 4-Bromofluorobenzene	%		Org-023	104	[NT]		[NT]	[NT]	101	

QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	372949-2
Date extracted	-			18/02/2025	1	18/02/2025	18/02/2025		18/02/2025	18/02/2025
Date analysed	-			19/02/2025	1	19/02/2025	19/02/2025		19/02/2025	19/02/2025
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	1	<50	<50	0	113	121
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	1	<100	<100	0	109	128
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	1	<100	<100	0	114	102
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	1	<50	<50	0	113	121
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	1	<100	<100	0	109	128
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	1	<100	<100	0	114	102
Surrogate o-Terphenyl	%		Org-020	95	1	87	101	15	124	106

QUALITY	Y CONTROL	: PAHs ir	Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	372949-2
Date extracted	-			18/02/2025	1	18/02/2025	18/02/2025		18/02/2025	18/02/2025
Date analysed	-			19/02/2025	1	19/02/2025	19/02/2025		19/02/2025	19/02/2025
Naphthalene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	80	79
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Acenaphthene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	85
Fluorene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	83	82
Phenanthrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	79	77
Anthracene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Fluoranthene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	85	84
Pyrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	84
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Chrysene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	94
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	69	69
Indeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	80	1	73	74	1	61	66

QUALITY CC	QUALITY CONTROL: HM in water - dissolved								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			17/02/2025	1	17/02/2025	17/02/2025		17/02/2025	
Date analysed	-			17/02/2025	1	17/02/2025	17/02/2025		17/02/2025	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	1	1	0	84	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	87	
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	2	2	0	95	
Copper-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	92	
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	86	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	116	
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	1	1	0	92	
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	4	4	0	94	

QUALITY		Duj		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date prepared	-			17/02/2025	[NT]	[NT]		[NT]	17/02/2025	
Date analysed	-			17/02/2025	[NT]	[NT]		[NT]	17/02/2025	
Arsenic-Total	µg/L	1	Metals-022	<1	[NT]	[NT]		[NT]	87	
Cadmium-Total	µg/L	0.1	Metals-022	<0.1	[NT]	[NT]		[NT]	87	
Chromium-Total	µg/L	1	Metals-022	<1	[NT]	[NT]		[NT]	93	
Copper-Total	µg/L	1	Metals-022	<1	[NT]	[NT]		[NT]	92	
Lead-Total	µg/L	1	Metals-022	<1	[NT]	[NT]		[NT]	89	
Mercury-Total	µg/L	0.05	Metals-021	<0.05	[NT]	[NT]		[NT]	113	
Nickel-Total	µg/L	1	Metals-022	<1	[NT]	[NT]		[NT]	92	
Zinc-Total	µg/L	1	Metals-022	<1	[NT]	[NT]		[NT]	92	

QUALITY CONTR	OL: PFAS ii	n Waters ⁻	Trace Extended			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			17/02/2025	[NT]		[NT]	[NT]	17/02/2025	
Date analysed	-			17/02/2025	[NT]		[NT]	[NT]	17/02/2025	
Perfluorobutanesulfonic acid	µg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	98	
Perfluoropentanesulfonic acid	µg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	99	
Perfluorohexanesulfonic acid - PFHxS	µg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	88	
Perfluoroheptanesulfonic acid	µg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	98	
Perfluorooctanesulfonic acid PFOS	µg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	95	
Perfluorodecanesulfonic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	88	
Perfluorobutanoic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	93	
Perfluoropentanoic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	87	
Perfluorohexanoic acid	µg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	83	
Perfluoroheptanoic acid	µg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	85	
Perfluorooctanoic acid PFOA	µg/L	0.0002	Org-029	<0.0002	[NT]		[NT]	[NT]	97	
Perfluorononanoic acid	µg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	86	
Perfluorodecanoic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	91	
Perfluoroundecanoic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	85	
Perfluorododecanoic acid	μg/L	0.005	Org-029	<0.005	[NT]		[NT]	[NT]	98	
Perfluorotridecanoic acid	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	106	
Perfluorotetradecanoic acid	μg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	91	
4:2 FTS	µg/L	0.001	Org-029	<0.001	[NT]		[NT]	[NT]	80	
6:2 FTS	µg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	98	
8:2 FTS	µg/L	0.0004	Org-029	<0.0004	[NT]		[NT]	[NT]	80	
10:2 FTS	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	102	
Perfluorooctane sulfonamide	µg/L	0.01	Org-029	<0.01	[NT]		[NT]	[NT]	89	
N-Methyl perfluorooctane sulfonamide	µg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	95	
N-Ethyl perfluorooctanesulfon amide	µg/L	0.1	Org-029	<0.1	[NT]		[NT]	[NT]	94	
N-Me perfluorooctanesulfonamid oethanol	µg/L	0.05	Org-029	<0.05	[NT]		[NT]	[NT]	86	
N-Et perfluorooctanesulfonamid oethanol	µg/L	0.5	Org-029	<0.5	[NT]		[NT]	[NT]	91	
MePerfluorooctanesulf- amid oacetic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	109	
EtPerfluorooctanesulf- amid oacetic acid	µg/L	0.002	Org-029	<0.002	[NT]		[NT]	[NT]	90	
Surrogate ¹³ C ₈ PFOS	%		Org-029	102	[NT]		[NT]	[NT]	97	
Surrogate ¹³ C ₂ PFOA	%		Org-029	98	[NT]		[NT]	[NT]	98	

QUALITY CONTR	ROL: PFAS ir	Waters	Trace Extended			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Extracted ISTD ¹³ C ₃ PFBS	%		Org-029	106	[NT]		[NT]	[NT]	90	
Extracted ISTD ¹⁸ O ₂ PFHxS	%		Org-029	112	[NT]		[NT]	[NT]	100	
Extracted ISTD ¹³ C ₄ PFOS	%		Org-029	97	[NT]		[NT]	[NT]	97	
Extracted ISTD ¹³ C ₄ PFBA	%		Org-029	114	[NT]		[NT]	[NT]	109	
Extracted ISTD ¹³ C ₃ PFPeA	%		Org-029	115	[NT]		[NT]	[NT]	103	
Extracted ISTD ¹³ C ₂ PFHxA	%		Org-029	98	[NT]		[NT]	[NT]	100	
Extracted ISTD ¹³ C ₄ PFHpA	%		Org-029	108	[NT]		[NT]	[NT]	105	
Extracted ISTD ¹³ C ₄ PFOA	%		Org-029	97	[NT]		[NT]	[NT]	95	
Extracted ISTD ¹³ C ₅ PFNA	%		Org-029	95	[NT]		[NT]	[NT]	101	
Extracted ISTD ¹³ C ₂ PFDA	%		Org-029	110	[NT]		[NT]	[NT]	100	
Extracted ISTD ¹³ C ₂ PFUnDA	%		Org-029	112	[NT]		[TM]	[NT]	104	
Extracted ISTD ¹³ C ₂ PFDoDA	%		Org-029	98	[NT]		[TN]	[NT]	100	
Extracted ISTD ¹³ C ₂ PFTeDA	%		Org-029	105	[NT]		[NT]	[NT]	84	
Extracted ISTD ¹³ C ₂ 4:2FTS	%		Org-029	142	[NT]		[NT]	[NT]	137	
Extracted ISTD ¹³ C ₂ 6:2FTS	%		Org-029	141	[NT]		[NT]	[NT]	120	
Extracted ISTD ¹³ C ₂ 8:2FTS	%		Org-029	152	[NT]		[NT]	[NT]	139	
Extracted ISTD ¹³ C ₈ FOSA	%		Org-029	113	[NT]		[NT]	[NT]	100	
Extracted ISTD d ₃ N MeFOSA	%		Org-029	109	[NT]		[NT]	[NT]	109	
Extracted ISTD d₅ N EtFOSA	%		Org-029	115	[NT]		[NT]	[NT]	110	
Extracted ISTD d7 N MeFOSE	%		Org-029	116	[NT]		[NT]	[NT]	114	

QUALITY CONTR		Duplicate					covery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Extracted ISTD d ₉ N EtFOSE	%		Org-029	110	[NT]		[NT]	[NT]	111	
Extracted ISTD d ₃ N MeFOSAA	%		Org-029	108	[NT]		[NT]	[NT]	99	
Extracted ISTD d₅ N EtFOSAA	%		Org-029	173	[NT]		[NT]	[NT]	134	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

SAMPLE RECEIPT ADVICE

Client Details	
Client	JK Environments
Attention	Katrina Taylor

Sample Login Details	
Your reference	E32976BT2, Kogarah
Envirolab Reference	372949
Date Sample Received	13/02/2025
Date Instructions Received	13/02/2025
Date Results Expected to be Reported	20/02/2025

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	6 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	3
Cooling Method	Ice
Sampling Date Provided	YES

Comments Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

Sample ID	VOCs in water	vTRH(C6-C10)/BTEXN in Water	svTRH (C10-C40) in Water	PAHs in Water	HM in water - dissolved	HM in water - total	PFAS in Waters Trace Extended
BH203	\checkmark	✓	\checkmark	\checkmark	\checkmark		\checkmark
BH207	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
BH208	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
GWDUP-201	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
TB-201		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark
TS-201		1					

The ' \checkmark ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE AND CHAIN OF CUSTODY FORM

.

÷

.

<u>TO:</u> ENVIROLAB S 12 ASHLEY ST	REET		JKE Job Number: Date Results Required: Page: 1 of 1]											
CHATSWOOD P: (02) 991062 F: (02) 991062	200)67					REAR OF 115 WICKS ROAD MACQUARIE PARK, NSW 2113 P: 02-9888 5000 F: 02-9888 5001											
Attention: Ail	een]			Attention: Katrina Taylor ktaylor@ikenvironments.com.au								
Location:	Kogara	h, NSW	· · · · · · · · · · · · · · · · · · ·				Sample Preserved in Esky on Ice											
Sampler:	VR			-	· · · · · · · · · · · · · · · · · · ·					Tests Required								
Date Sampled	Lab Ref:	Sample Number	Sample Containers	PID	Sample Description	Combo 3	vocs	PFAS	BTEX									
13/02/2025	1	BH203	## & 2x PFAS	0	Groundwater	x	x	x										
13/02/2025	2	BH207	## & 2x PFAS	0	Groundwater	x	x	X						n. 				
13/02/2025	3	BH208	## & 2x PFAS	0.7	Groundwater	x	x	х				 						
13/02/2025	4	GWDUP-201	## & 2x PFAS	*	Duplicate	x	x	x			е -							
13/02/2025	S	TB-201	## & 2x PFAS	-	Trip Blank	x		x				ļ						
13/02/2025	6	TS-201	1x Vial	-	Trip Spike	<u> </u>			х									
		ENVIROLAB	Envirolab Servic 12 Ashley Chatswood NSW 20 - Ph: (02) 0940 52	St 67		:					*						4	
			72949															
		Date Receive Time Receiv Received By	led: 1540												-			
		Temp: Cool/ Cooling: (ce/	Ambient										,					
				, r	*	<u> </u>	P							,				
									ĸ									
÷		· · · · ·				<u> </u>		;									h.	
Remarks (con			ntaine)mL An		Glass E	Bottle	, 4x Vi	ials, 2x	HNO	3, 1x P	lastic							
Relinquished By: V. News - 13/2/25 / 1.05pm								Time: 13/25				Received By: Katy Wayne				Date: 1540		

Appendix E: Report Explanatory Notes

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)²² methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)²³. The NEPM (2013) is consistent with these documents.

A. <u>Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)</u>

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: *"The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).*

B. <u>Precision</u>

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. <u>Accuracy</u>

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. <u>Representativeness</u>

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;

 ²² US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)
 ²³ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. <u>Comparability</u>

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. <u>Blanks</u>

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. <u>Matrix Spikes</u>

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result – Sample Result) x 100 Concentration of Spike Added

I. <u>Surrogate Spikes</u>

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{(D1 + D2)/2}$

Appendix F: Data (QA/QC) Evaluation

Data (QA/QC) Evaluation

A. INTRODUCTION

This Data (QA/QC) Evaluation forms part of the validation process for the DQOs documented in the SAQP attached in Appendix G of this report. Checks were made to assess the data in terms of precision, accuracy, representativeness, comparability and completeness. These 'PARCC' parameters are referred to collectively as DQIs and are defined in the Report Explanatory Notes attached in the report appendices.

1. Field and Laboratory Considerations

The quality of the analytical data produced for this project has been considered in relation to the following:

- Sample collection, storage, transport and analysis;
- Laboratory PQLs;
- Field QA/QC results; and
- Laboratory QA/QC results.

2. Field QA/QC Samples and Analysis

The results for the field QA/QC samples are detailed in the laboratory summary tables (Table Q1 to Table Q3 inclusive) attached to the investigation report and are discussed in the subsequent sections of this Data (QA/QC) Evaluation report. A summary of the field QA/QC samples collected and analysed for this investigation is provided in the following table:

Sample Type	Number Analysed	Frequency (of Sample Type)
Intra-laboratory duplicate Soil Groundwater	1 1	Approximately 4% of primary samples Approximately 33% of primary samples
Inter-laboratory duplicate Soil	1	Approximately 4% of primary samples
<u>Trip spikes</u> Soil Water	1 1	One for each media for the investigation to demonstrate adequacy of preservation, storage and transport methods
<u>Trip blanks</u> Soil Water	1	One for each media for the investigation to demonstrate adequacy of storage and transport methods
Rinsate Soil (Hand auger)	1	One for the investigation to demonstrate adequacy of decontamination methods

3. Data Assessment Criteria

JKE adopted the following criteria for assessing the field and laboratory QA/QC analytical results:

Field Duplicates

Acceptable targets for precision of field duplicates in this report will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Field/Trip Blanks and Rinsates

Acceptable targets for field blank and rinsate samples in this report will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to typical background concentrations in soils and published drinking water guidelines for waters.

Trip Spikes

Acceptable targets for trip spike samples in this report will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which is outlined in the laboratory reports. These criteria were developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the acceptable limits adopted by the primary laboratory (Envirolab) is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics;
- 60-140% recovery acceptable for organics; and
- 10-140% recovery acceptable for VOCs.

Surrogate Spikes

- 60-140% recovery acceptable for general organics; and
- 10-140% recovery acceptable for VOCs.

Method Blanks

• All results less than PQL.

JKEnvironments

B. DATA EVALUATION

1. <u>Sample Collection, Storage, Transport and Analysis</u>

Samples were collected by trained field staff in accordance with our standard sampling procedures. Field sampling procedures were designed to be consistent with relevant guidelines, including NEPM (2013) and other guidelines made under the CLM Act 1997.

Appropriate sample preservation, handling and storage procedures were adopted. Laboratory analysis was undertaken within specified holding times generally in accordance with Schedule B(3) of NEPM (2013) and the laboratory NATA accredited methodologies.

Envirolab noted that the asbestos results were reported to be consistent with the recommendations in NEPM (2013), however this level of reporting is outside the scope of their NATA accreditation. In the absence of other available analytical methods for asbestos, this was found to be acceptable for the purpose of this investigation.

An inter-laboratory duplicate groundwater sample was not obtained due to mis-communication with the field staff. JKE is of the opinion that this is not significant when considering data precision overall, and it does not affect the quality of the dataset as a whole or the outcome of the investigation.

Review of the project data also indicated that:

- COC documentation was adequately maintained;
- Sample receipt advice documentation was provided for all sample batches;
- All analytical results were reported; and
- Consistent units were used to report the analysis results.

2. Laboratory PQLs

Appropriate PQLs were adopted for the analysis and all PQLs were below the SAC, with the exception of some PAH and VOC PQLs for groundwater analysis. JKE is of the opinion that this is not significant, and it does not affect the quality of the dataset as a whole or the outcome of the investigation. However, due to the detections of PAHs in one groundwater sample (including anthracene), an additional round of sampling has been recommended to confirm this.

3. Field QA/QC Sample Results

Field Duplicates

The results indicated that field precision was acceptable. RPD non-conformances were reported for some analytes as discussed below:

- Elevated RPDs were reported for several PAH compounds and nickel in SDUP101/BH217 (0-0.1m);
- Elevated RPDs were reported for several PAH compounds, lead, nickel and zinc in SDUP202/BH207 (0-0.1m); and
- Elevated RPDs were reported for zinc and several PFAS compounds in GW-DUP201/MW207.

Values outside the acceptable limits have predominantly been attributed to concentrations close to the PQL which amplifies RPD exceedances. Some results have been attributed to sample heterogeneity and the

difficulties associated with obtaining homogenous duplicate samples of heterogeneous matrices. Where applicable, the higher duplicate value has been adopted as a conservative measure (see attached report tables), so there have been no adverse effects on the risk assessment process.

Field/Trip Blanks

During the investigation, one soil trip blank and one water trip blank was placed in the esky during sampling and transported back to the laboratory. The results were all less than the PQLs, therefore cross contamination between samples that may have significance for data validity did not occur.

Rinsates

The detectable concentration of light fraction TRH is attributed the use of plastic containers as noted in the Envirolab report 370762.

Trip Spikes

The soil trip spike results ranged from 81% to 82% and indicated that field preservation methods were appropriate.

The water trip spike results ranged from 106% to 111% and indicated that field preservation methods were appropriate.

4. <u>Laboratory QA/QC</u>

The analytical methods implemented by the laboratory were performed in accordance with their NATA accreditation and were consistent with Schedule B(3) of NEPM (2013). The frequency of data reported for the laboratory QA/QC (i.e. duplicates, spikes, blanks, LCS) was considered to be acceptable for the purpose of this investigation.

Envirolab report 370762

- The RPD for PAHs duplicate results was accepted due to the non-homogenous nature of samples;
- The laboratory RPD acceptance criteria were exceeded for lead in one sample. Therefore, a triplicate result was issued;
- The laboratory RPD acceptance criteria were exceeded for nickel in one sample. Therefore, a triplicate result was issued;
- Percent recovery for metals was not applicable due to the high concentration of the elements in the samples. However, an acceptable recovery was obtained for the LCS; and
- Percent recovery was not possible to report for metals due to the inhomogeneous nature of the elements in the sample/s. However, an acceptable recovery was obtained for the LCS.

Envirolab report 372949

• For PFAS Extracted Internal Standards denoted with # or outside the 50-150% acceptance range, the respective target analyte results may be unaffected, in other circumstances the PQL has been raised to accommodate the outlier(s).

Overall, the laboratory QA/QC identified some relatively minor non-conformances that occurred in a relatively small portion of the dataset. In our opinion the non-conformances do not compromise the precision and accuracy of the data to the extent that they are unacceptable.

JKEnvironments

A. DATA QUALITY SUMMARY

JKE is of the opinion that the data are adequately precise, accurate, representative, comparable and complete to serve as a basis for interpretation to achieve the investigation objectives.

Non-conformances were reported for some field QA/QC samples and laboratory QA/QC analysis. These non-conformances were considered to be sporadic and minor, and were not considered to be indicative of systematic sampling or analytical errors. On this basis, these non-conformances are not considered to materially impact the report findings.

There was only one groundwater monitoring event was undertaken for the investigation. On this basis there is some uncertainty around the representativeness of the groundwater data, particularly during different climatic conditions and after wet/dry periods. This has been considered in the discussion of the report and the need for an additional round of groundwater sampling has been noted.


Appendix G: Field Work Documents

JKE SAQP

REPORT TO **NSW DEPARTMENT OF EDUCATION**

ON

FOR

AΤ

SAMPLING ANALYSIS AND QUALITY PLAN FOR DETAILED SITE INVESTIGATION

PROPOSED ALTERATIONS AND ADDITIONS

KOGARAH PUBLIC SCHOOL, 24B GLADSTONE STREET, KOGARAH, NSW

Date: 6 January 2025 Ref: E32976PTrpt3-SAQP

JKEnvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Katrina / aylor Senior Associate | Environmental Scientist

Report reviewed by:

Brendah Page Principal | Environmental Scientist CEnvP SC

For and on behalf of JKE PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E32976PTrpt3-SAQP	Final Report	6 January 2025

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the Client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Table of Contents

1	INTR	ODUCTION	1
	1.1	PROPOSED DEVELOPMENT DETAILS	1
	1.2	AIMS AND OBJECTIVES	1
	1.3	Scope of Work	1
2	SITE I	INFORMATION	3
	2.1	Background	3
	2.2	SITE IDENTIFICATION	5
	2.3	SITE LOCATION AND REGIONAL SETTING	5
	2.4	Тородгарну	5
	2.5	SITE INSPECTION	5
	2.6	SURROUNDING LAND USE	6
	2.7		6
	2.8	SUMMARY OF REGIONAL GEOLOGY AND HYDROGEOLOGY	6
	2.9	RECEIVING WATER BODIES	8
3	CONC	CEPTUAL SITE MODEL	9
	3.1	POTENTIAL CONTAMINATION SOURCES/AEC AND COPC	9
	3.2	Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways	10
4	SAMI	PLING, ANALYSIS AND QUALITY PLAN	12
	4.1	DATA QUALITY OBJECTIVES (DQO)	12
	4.2	Soil Sampling Plan and Methodology	16
	4.3	GROUNDWATER SAMPLING PLAN AND METHODOLOGY	18
	4.4	LABORATORY ANALYSIS AND PROPOSED ANALYTICAL SCHEDULE	19
5	SITE	ASSESSMENT CRITERIA (SAC)	21
	5.1	Soil	21
	5.2	GROUNDWATER	23
6	DSI R	EPORTING REQUIREMENTS	25
7	LIMIT	TATIONS	26
		×	

List of Tables

Table 2-1: Previous information summary	3
Table 2-2: Site Identification	5
Table 2-3: Summary of Subsurface Conditions	7
Table 3-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern	9
Table 3-2: CSM	10
Table 4-1: Proposed DSI Soil Sampling Plan and Methodology	16
Table 4-2: Proposed Groundwater Sampling Plan and Methodology	18
Table 4-3: Laboratory Details	19
Table 5-1: Details for Asbestos SAC	21
Table 5-2: Waste Categories	22

Attachments

Appendix A: Report Figures Appendix B: Report Explanatory Notes Appendix C: Guidelines and Reference Documents

RENN

Abbreviations

Asbestos Fines/Fibrous Asbestos	AF/FA
Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM ADWG
Australian Drinking Water Guidelines Area of Environmental Concern	
	AEC
Australian Height Datum	AHD
Acid Sulfate Soil	ASS
Before You Dig Australia	BYDA
Below Ground Level	BGL
Benzo(a)pyrene Toxicity Equivalent Factor	BaP TEQ
Benzene, Toluene, Ethylbenzene, Xylene	BTEX
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Contaminant(s) of Potential Concern	CoPC
Chain of Custody	COC
Cis-1,2-dichloroethene	cis-DCE
Conceptual Site Model	CSM
Development Application	DA
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Investigation Level	EIL ESL
Ecological Screening Level	ESL
Environment Protection Authority	FCF
Fibre Cement Fragment(s) Finished Floor Level	FFL
General Approval of Immobilisation	GAI
Health Investigation Level	HIL
Health Screening Level	HSL
Health Screening Level Site Specific Assessment	HSL-SSA
International Organisation of Standardisation	ISO
JK Environments	JKE
JK Geotechnics	JKG
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	OCP
Organophosphate Pesticides	OPP
Perchloroethylene (also known as tetrachloroethene)	PCE
Polycyclic Aromatic Hydrocarbons	PAH
Polychlorinated Biphenyls	РСВ
Per-and Polyfluoroalkyl Substances	PFAS
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL
Quality Assurance	QA
Quality Control	QC
Relative Percentage Difference	RPD
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP

JKEnvironments

L

%

%w/w

State Environmental Planning Policy Site Specific Assessment Source, Pathway, Receptor Specific Contamination Concentration **Standard Penetration Test** Standing Water Level Trichloroethene Trip Blank **Toxicity Characteristic Leaching Procedure Total Recoverable Hydrocarbons** Trip Spike Upper Confidence Limit United States Environmental Protection Agency Volatile Organic Compounds Vinyl Chloride World Health Organisation

Units

Litres Metres BGL Metres Millivolts Millilitres Milliequivalents micro Siemens per Centimetre Micrograms per Litre Milligrams per Kilogram Parts Per Million Percentage Percentage weight for weight

20

SEPP SSA SPR SCC SPT SWL TCE ΤВ TCLP TRH TS UCL USEPA voc VC WHO mBGL m mV ml or mL meq μS/cm μg/L mg/kg ppm

1 INTRODUCTION

NSW Department of Education ('the client') commissioned JK Environments (JKE) to prepare a Sampling Analysis and Quality Plan (SAQP) for the Detailed Site Investigation (DSI) to be undertaken by JKE for the proposed alterations and additions at Kogarah Public School, 24B Gladstone Street, Kogarah, NSW ('the site'). The site location is shown on Figure 1 and the proposed investigation will be confined to the site boundaries as shown on Figure 2a attached in the appendices.

JKE has previously undertaken a Phase 1 Desktop Assessment (desktop) and a Phase 2 Preliminary Intrusive Investigation (intrusive investigation) at the site. WSP has also previously prepared a Preliminary Desktop Site Investigation at the site. A summary of relevant information from these reports is included in Section 2.

1.1 Proposed Development Details

It is understood that the proposed development includes removal of all existing demountable teaching spaces across the site (refer to Figure 2a), and construction of a three-storey building and a new hall structure. A basement level is not proposed.

1.2 Aims and Objectives

The primary aim of the DSI is to characterise the soil and groundwater contamination conditions in accessible areas in order to assess site risks in relation to contamination and establish whether remediation is required. A secondary aim of the investigation is to provide preliminary waste classification data for off-site disposal of soil waste which may be generated during the proposed development works.

The DSI objectives are to:

- Assess the current site conditions and use(s) via a site walkover inspection;
- Assess the soil and groundwater contamination conditions via implementation of a sampling and analysis program;
- Document an iteration and review of the conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Provide a preliminary waste classification for off-site disposal of soil;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether further intrusive investigation and/or remediation is required.

1.3 Scope of Work

The SAQP was prepared generally in accordance with a JK proposal (Ref: 32976LTrev1prop) of 13 December 2024 and written acceptance from the client.

The scope of work included review of the existing project information and preparation of an SAQP with regards to National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended

(2013)¹, and other guidelines made under or with regards to the Contaminated Land Management Act (1997)².

A list of reference documents/guidelines is included in the appendices.

¹ National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013). (referred to as NEPM 2013)

² Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

2 SITE INFORMATION

2.1 Background

JKE undertook previous investigations at the site and wider school property in 2020, and WSP undertook a previous investigation in 2023. The western portion of the wider school property does not form part of the site for the purpose of the DSI (see Figures 1 and 2a in Appendix A). A summary of relevant information from the previous investigations is outlined in the table below:

Table 2-1: Previous	information summary
---------------------	---------------------

Report	Summary of relevant information
Phase 1 Desktop	The desktop included review of site information, including: background and historical
Assessment, 2020 ³	information; a walkover site inspection; and preparation of a report presenting the results of the assessment, including a CSM.
	Site history information indicated that residential style structures had been present on
	the site, and one of the lots within the site had been utilised as a bus depot. The site
	and wider school property was progressively developed into the primary school site
	from 1956. During this time, demolition of the original site structures occurred, along
	with potential filling of the site. The age of the former and existing buildings indicated the potential for hazardous building materials to be present.
	During the JKE site inspection, a fibre cement fragment (FCF) of suspected asbestos
	containing material (ACM) was identified on the site, and fill material (i.e.
	imported/disturbed soils) was also observed at the site surface in several areas.
	Based on the scope of work undertaken for desktop, the CSM identified the following
	potential contamination sources/areas of environmental concern (AEC):
	Fill material - It was considered possible that minor historical filling had occurred
	to achieve the existing levels. The fill may have been imported from various
	sources and could be contaminated. It was also considered possible that fill was
	generated from the native (on-site soils) and was mixed with debris during various phases of redevelopment;
	• Historical use as a bus depot - Historical title records indicated that the site was
	owned by a company providing bus service operations and aerial photographs
	confirmed buses were being stored on this section of the site. Fuels, oils and solvents (e.g. toluene/mineral spirit/thinners) may have been used during this
	site use;
	• Use of pesticides - Pesticides may have been used beneath the buildings and/or around the site;
	Hazardous building materials (i.e. asbestos containing material - ACM) -
	Hazardous building materials may be present as a result of former building and demolition activities. These materials may also be present in the existing buildings/ structures on site. Hazardous building materials can also occur in fill due to historical demolition activities; and
	 Up-gradient off-site historical dry cleaners and motor garage/service stations –
	historical business directories indicated that several of these businesses were
	located upgradient of the site and may pose a risk to the site via migration of contaminated groundwater.
	The desktop recommended undertaking a preliminary intrusive investigation to make
	an initial assessment of contamination-related risks and to inform the design of a
	detailed (Stage 2) site investigation (DSI).

³ JKE, (2020a). Report to School Infrastructure NSW on Phase 1 Desktop Assessment for Proposed School Redevelopment (SINSW00330/19) at Kogarah Public School, 24B Gladstone Street, Kogarah, NSW. (Ref: E32976PTrpt-KPS, dated 28 February 2020) (referred to as desktop)

Devent	Commence of a lower to formation
Report	Summary of relevant information
Phase 2 Preliminary Intrusive Investigation, 2020 ⁴	The intrusive investigation included a review of existing project information, a site inspection, and soil sampling from 10 boreholes, of which four were located on the current site, including BH107 to BH110 inclusive (refer to Figure 2a). Fill material was encountered to depths of between approximately 0.2m below ground level (BGL) and 1.7m BGL, underlain by natural residual sandy soils. The fill contained inclusions of igneous and ironstone gravel, glass fragments, sand and root fibres. A selection of soil samples was analysed for the contaminants of potential concern (CoPC) identified in the CSM. A surficial fibre cement fragment (FCF) was identified in the south of the site as shown on Figure 2a. The surficial FCF was removed from the site (as sample FCF-1) by JKE during the desktop was also analysed and was found to contain asbestos. Based on the data from the intrusive investigation, JKE was of the opinion that the potential risk of widespread subsurface contamination in the intrusive investigation area was low as the soil samples analysed did not identify contamination that was assessed to pose an unacceptable risk. FCF-1 was non-friable ACM. The source of the asbestos appeared to be a fibre cement board at the base of the neighbouring fence
	and was considered unlikely to be associated with on-site soils in that vicinity. The ACM was removed and no further fragments were identified in the area. The intrusive investigation report recommended that the investigation data obtained should be supplemented via a detailed investigation in order to fully characterise the contamination conditions at the site and establish whether remediation is required.
Site Contamination Services – Preliminary Desktop Site Investigation, 2023 ⁵	 The PSI comprised a desktop study to review general site details, site environmental setting and history, regulatory databases and client provided reports and information. The site history review was limited to historical aerial photographs and publicly available information on online databases. Based on the scope of work undertaken for desktop, the CSM identified the following potential contamination sources/areas of environmental concern (AEC): Uncontrolled fill materials potentially used historically to raise or level portions of the site; Historical or recent waste dumping; Potential ACM or hazardous building materials associated with imported materials or demolished structures; and Pesticides used historically and recently to maintain the site.
R	The report concluded that the site presented a low to moderate risk of inground contamination due to the potential for uncontrolled fill and poor demolition practices associated with historic development and demolition of residential buildings on the site. It is noted that the investigation did not include a site inspection.

⁴ JKE, (2020b). Report to School Infrastructure NSW on Phase 2 Preliminary Intrusive Investigation for Proposed School Redevelopment (SINSW00330/19) at Kogarah Public School, 24B Gladstone Street, Kogarah, NSW. (Ref: E32976PTrpt2-KPS, dated 8 May 2020) (referred to as intrusive investigation)

⁵ WSP, (2023). *Report to School Infrastructure NSW on Site Contamination Services – Preliminary Desktop Site Investigation, Kogarah Public School.* (Project Ref: PS206292, report dated 7 December 2023) (referred to as WSP PSI)

2.2 Site Identification

Table 2-2: Site Identification

Site Address:	24B Gladstone Street, Kogarah, NSW
Lot & Deposited Plan:	Lot 1 in DP179779, Lot A in DP391026, and part of Lot 1 in DP667959.
Current Land Use:	Primary School (Kindergarten to year 6)
Proposed Land Use:	Continued use as a primary school
Local Government Area:	Georges River Council
Current Zoning:	SP2: Infrastructure
Site Area (m ²) (approx.):	4,375
Geographical Location	Latitude: -33.9618430
(decimal degrees) (approx.):	Longitude: 151.1370970
Site Location Plans:	Appendix A

2.3 Site Location and Regional Setting

The site is located in the eastern portion of the existing Kogarah Public School property, which itself is in a mixed-use area of Kogarah and is bound by the Princes Highway to the east and Gladstone Street to the west. The site is located approximately 535m to the south-west of Muddy Creek and 1.7km to the west of Botany Bay.

2.4 Topography

The site is situated in gently undulating regional topography, with the site itself gently sloping towards the east at approximately 1° to 2°. Parts of the site appear to have been levelled to account for the slope and accommodate the existing development.

2.5 Site Inspection

The most recent walkover inspection of the site was undertaken by JKE on 23 March 202 as part of the intrusive investigation. A summary of the inspection findings is outlined below:

- At the time of the inspection, the site was occupied by the eastern portion of Kogarah Public School and included single storey buildings (demountable classrooms), a cover outdoor learning area, paved, soft-fall, and grass covered playground areas, and garden and landscaped areas;
- Several of the original school buildings on the wider school property, were constructed in the 1950s and are of an age indicative of housing hazardous building materials such as fibre cement/ACM and lead paint systems
- A single FCF was identified on the ground surface during the inspection (discussed in Section 2.1);

- Historical filling was suspected to have occurred. There were no other visible or olfactory indicators of contamination were observed during the inspection;
- Fill was observed at the ground surface in areas of exposed soils across the site. Imported material/fill was considered likely to be present in garden beds and as a result of general (minor) levelling works across the site; and
- Medium to large trees were observed around the site and a number of grass-covered sections of the site were also observed. Grass coverage was generally good in the unpaved areas, with the exception of some areas beneath large trees and isolated areas of the playground (generally around the interface with pavements).

2.6 Surrounding Land Use

During the 2020 site inspection, JKE observed the following land uses in the immediate surrounds of the school:

- North low density residential properties, a construction site (at least two basement levels being excavated) and several retail commercial properties;
- South low and medium density residential properties and Caltex Woolworths approximately 70m to the south and up-gradient;
- East St Paul's Anglican Church (heritage), children's centre (church run), low density residential and beyond the Princes Highway medium density residential; and
- West Medium to high density residential properties.

JKE did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

2.7 Underground Services

The 'Before You Dig Australia' (BYDA) plans were reviewed in preparation of this SAQP in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration. Major services were not identified that would be expected to act as preferential pathways for contamination migration.

2.8 Summary of Regional Geology and Hydrogeology

2.8.1 Regional Geology

Regional geological information reviewed for the previous investigations indicated that the site is underlain by underlain by Triassic aged deposits of medium to coarse-grained quartz sandstone, and very minor shale and laminate lenses (Hawksbury Sandstone).

A summary of the subsurface conditions encountered during the intrusive investigation is present in the table below:

Profile	Description
Pavement	Asphaltic Concrete (AC) pavement was encountered at the surface in BH109 and was approximately 20mm in thickness.
Fill	Fill was encountered at the surface or beneath the pavement in all boreholes and extended to depths of between approximately 0.2mBGL to 1.7mBGL. The fill typically comprised silty sandy clay, sandy silt, clayey sandy gravel or silty sand with inclusions of igneous and ironstone gravel, glass fragments, sand and root fibres.
	Neither staining nor odours were encountered in the fill material during the fieldwork. No FCF/ACM was encountered in the fill material during the fieldwork.
Natural Soil	Natural clayey or sandy residual soil was encountered beneath the fill in BH107 and BH108 and extended to depths of between approximately 1.6mBGL and 3.2mBGL. BH107 was terminated in the natural soils at a depth of 3.2mBGL.
	Neither staining nor odours were encountered in the natural soils during the fieldwork.
Bedrock	Sandstone bedrock was encountered beneath the fill material or natural soils in BH108, BH109 and BH110 from depths of 0.2m to 1.6mBGL.
Groundwater	Groundwater seepage was encountered in boreholes BH107 and BH110 at depths of approximately 1.0mBGL and 3.5mBGL during drilling. All other boreholes remained dry during and on completion of drilling.

blo 2 2. Summary of Subsurface Conditions

2.8.2 Acid Sulfate Soil (ASS) Risk and Planning

The site is not located in an acid sulfate soil (ASS) risk area according to the risk maps prepared by the Department of Land and Water Conservation. (1997)6.

The site is not mapped as being within an ASS risk area in the Georges River Local Environmental Plan 2021.

Hydrogeology 2.8.3

Hydrogeological information reviewed for the previous investigations indicated that the regional aquifer onsite and in the area immediately surrounding the site includes porous, extensive aquifers of low to moderate productivity. There was a total of 521 registered bores within the report buffer of 2,000m. In summary:

- The nearest registered bore was located approximately 397m from the site. This was utilised for domestic purposes;
- The majority of the bores were registered for domestic purposes;
- The drillers log information from the closest (within 500m) registered bores typically identified fill and/or sand and clay soil to depths of 3.65m-6.50m. Standing water levels (SWLs) in the bores ranged from 1.5m below ground level (BGL) to 3.0mBGL; and
- Groundwater is likely to be encountered at depths ranging from 3m to 5m below existing surface levels based on previous JKG investigations of nearby properties.

⁶ Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map (Series 9130N3, Ed 2)

Based on the above subsurface conditions at the site are expected to consist of relatively low permeability (residual) soils overlying relatively shallow bedrock. Abstraction and use of groundwater at the site or in the immediate surrounds may be viable as indicated by the number of registered monitoring bores, however the use of groundwater is not proposed as part of the development. There is a reticulated water supply in the area and consumption of groundwater is not expected to occur.

Considering the local topography and surrounding land features, JKE would generally expect groundwater to flow towards the north-east.

2.9 Receiving Water Bodies

200

Surface water bodies were not identified in the immediate vicinity of the site. The closest surface water body is Muddy Creek, a tributary of the Cooks River located approximately 535m to the north-east of the site. This is down-gradient from the site, and is considered to be a potential receptor.

3 CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and background/site history site history information. Reference should also be made to the figures attached in the appendices.

3.1 Potential Contamination Sources/AEC and CoPC

The potential contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC) are presented in the following table:

Table 3-1: Potential (and/or known) Contamination Sources/AEC and Contaminants of Potential Concern

Source / AEC	СоРС
Fill material – It is possible that minor historical filling has	Heavy metals (arsenic, cadmium, chromium,
occurred to achieve the existing levels. The fill may have	copper, lead, mercury, nickel and zinc), petroleum
been imported from various sources and could be	hydrocarbons (referred to as total recoverable
contaminated. It is also possible that fill was generated from	hydrocarbons – TRHs), benzene, toluene,
the native (on-site soils) and was mixed with debris during	ethylbenzene and xylene (BTEX), polycyclic
various phases of redevelopment.	aromatic hydrocarbons (PAHs), organochlorine
(pesticides (OCPs), organophosphate pesticides
Fill material was encountered to depths of between 0.2m to	(OPPs), polychlorinated biphenyls (PCBs) and
1.7mBGL across the site during the intrusive investigation.	asbestos.
Historical bus depot land use – Historical title records	Heavy metals, TRH, and BTEX (solvents such as
indicated that the site was owned by a company providing	toluene and mineral spirits would be detectable via
bus service operations and aerial photographs confirmed	the TRH and BTEX analysis).
buses were being stored on this section of the site. Fuels, oils	
and solvents may have been used during this site use.	
Use of pesticides – Pesticides may have been used beneath	Heavy metals and OCPs.
the buildings and/or around the site.	
Hazardous Building Material – Hazardous building materials	Asbestos, lead and PCBs.
may be present as a result of former building and demolition	
activities. These materials may also be present in the existing	
buildings/ structures on site.	
Off-site Area 1 (Dry Cleaners) – Historical business directories	Per-and polyfluoroalkyl substances (PFAS),
indicated that at least eight dry cleaner businesses were	TRHs and VOCs, including tetrachloroethene (also
located upgradient of the site. These properties are	known as perchloroethylene - PCE) and the
considered to be potential sources of site contamination	breakdown products trichloroethene (TCE), cis-1,2-
associated with groundwater migration.	dichloroethene (cis-DCE) and vinyl chloride (VC).
Off-site Area 2 (Mechanics/Service Stations) – Historical	Heavy metals (lead), TRH and BTEX.
business directories indicated that at least two motor	
mechanics/service station businesses were located up-	
gradient (south/south-west) of the site. These properties are	
considered to be potential sources of site contamination	
associated with groundwater migration.	

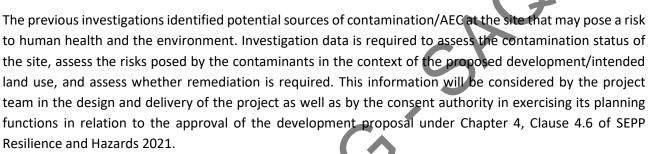
3.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table 3-2: CSM	
Potential mechanism for contamination	The potential mechanisms for contamination are most likely to include 'top-down' impacts and spills. There is a potential for sub-surface releases to have occurred if deep fill (or other buried industrial infrastructure) is present, although this is considered to be the least likely mechanism for contamination. The mechanisms for contamination from off-site sources could have occurred via 'top down' impacts and spills, or sub-surface release. Impacts to the site could occur via the migration of contaminated groundwater.
Affected media	Soil and groundwater have been identified as potentially affected media. At this stage, soil vapour is not being investigated. This is to be considered further in the event that potential vapour risks are identified via the soil and groundwater analysis.
Receptor identification	Human receptors include site occupants/users (including adults and children), construction workers and intrusive maintenance workers. Off-site human receptors include adjacent land users, and groundwater users. Ecological receptors include terrestrial organisms and plants within unpaved areas (including the proposed landscaped areas), and ecology in down-gradient water bodies.
Potential exposure pathways	Potential exposure pathways relevant to the human receptors include ingestion, dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH, naphthalene, VOCs and BTEX). The potential for exposure would typically be associated with the construction and excavation works, and future use of the site. Potential exposure pathways for ecological receptors include direct/primary contact and ingestion. Exposure during future site use could occur via direct contact with soil in unpaved areas such as gardens, inhalation of airborne asbestos fibres during soil disturbance, or inhalation of vapours within enclosed spaces such as buildings and basements. Exposure to groundwater may occur in Muddy Creek and/or the Cooks River through
Potential exposure	direct migration. The following have been identified as potential exposure mechanisms for site
mechanisms	 Vapour intrusion into the proposed building (either from soil contamination or volatilisation of contaminants from groundwater); Contact (dermal, ingestion or inhalation) with exposed soils in landscaped areas and/or unpaved areas; Contact with groundwater during construction; Migration of groundwater off-site and into nearby water bodies, including aquatic ecosystems and those being used for recreation; and Migration of groundwater off-site into areas where groundwater is being utilised as a resource (i.e. for domestic or irrigation).

Presence of preferential pathways for contaminant movement None

APENDIX


4 SAMPLING, ANALYSIS AND QUALITY PLAN

4.1 Data Quality Objectives (DQO)

Data Quality Objectives (DQOs) have been developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2. The DQOs were prepared with reference to the process outlined in Schedule B2 of NEPM (2013). The seven-step DQO approach for this project is outlined in the following sub-sections.

The DQO process is validated in part by the Data Quality Assurance/Quality Control (QA/QC) Evaluation. The Data (QA/QC) Evaluation will be summarised in the DSI report.

4.1.1 Step 1 - State the Problem

A waste classification is required prior to off-site disposal of excavated soil/bedrock.

4.1.2 Step 2 - Identify the Decisions of the Study

The objectives of the DSI are outlined in Section 1.2. The decisions to be made reflect these objectives and are as follows:

- Are any results above the SAC?
- Do potential risks associated with contamination exist, and if so, what are they?
- Is further investigation/remediation required and what is this likely to involve?
- What is the preliminary waste classification of the in-situ fill material and natural soils/bedrock sampled and is further sampling/analysis required to confirm the waste classification(s)?
- Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

4.1.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

- Existing relevant environmental data from previous reports;
- Site information, including site observations and site history documentation;
- Sampling of potentially affected media, including soil and groundwater;
- Observations of sub-surface variables such as soil type, photo-ionisation detector (PID) concentrations, odours and staining, and groundwater physiochemical parameters;
- Laboratory analysis of soils, fibre cement (if identified) and groundwater samples for the CoPC identified in the CSM; and

• Field and laboratory QA/QC data.

4.1.4 Step 4 - Define the Study Boundary

The sampling will be confined to the site boundaries as shown in Figure 2 and will be limited vertically to a maximum nominated sampling depth of 8mBGL for groundwater (spatial boundary). The final depth could depend on site conditions and will be noted in the DSI. At this stage, the sampling is scheduled to be completed between January and February 2025 (temporal boundary). Areas not accessible for sampling will be noted in the DSI as data gaps.

4.1.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

4.1.5.1 Tier 1 Screening Criteria

The laboratory data will be assessed against relevant Tier 1 screening criteria (referred to as SAC), as outlined in Section 5. Exceedances of the SAC do not necessarily indicate a requirement for remediation or a risk to human health and/or the environment. Exceedances are considered in the context of the CSM and valid SPR-linkages.

Where appropriate, data will be assessed against valid statistical parameters to characterise the data population. This will include calculation and application of mean values and/or 95% upper confidence limit (UCL) values for the data set, with regards to the NEPM (2013) framework and other relevant guidelines made under the CLM Act 1997.

For the DSI, the following decision rules will be considered:

- If all CoPC (with the exception of asbestos) concentrations are below the SAC, then the data will be compared directly to the SAC without statistical analysis;
- For soil data, if any individual CoPC (with the exception of asbestos) concentration is above the SAC, then statistical analysis will be considered based on the sampling plan. This will include calculation of the 95% upper confidence limit (UCL) value for the data set, with regards to the NEPM (2013) framework and other relevant guidelines made under the CLM Act 1997. The UCL will be considered acceptable where the UCL is below the SAC, the standard deviation of the data is less than 50% of the SAC and none of the individual concentrations are more than 250% of the SAC;
- If asbestos concentrations are encountered above the SAC or in the top 100mm of soil, then asbestos will be deemed a contaminant of concern for remediation purposes; and
- Groundwater data will be compared directly to the SAC and evaluated with regards to valid/complete SPR-linkages.

4.1.5.2 Field and Laboratory QA/QC

Field QA/QC will include analysis of inter-laboratory duplicates (minimum of 5% of primary samples), intralaboratory duplicates (minimum of 5% of primary samples), and trip spike (for volatiles), trip blank (for selected organic and inorganic compounds) and rinsate (for selected organic and inorganic compounds) samples (one for each medium sampled to assess the adequacy of field practices).

Further details regarding the sampling and analysis undertaken, and the acceptable limits adopted, will be included in the Data Quality (QA/QC) Evaluation presented in the DSI report.

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which will be outlined in the laboratory reports. These criteria are developed and implemented in accordance with the laboratory's National Association of Testing Authorities, Australia (NATA) accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence are reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, the most conservative concentration reported are to be adopted.

4.1.5.3 Appropriateness of Practical Quantitation Limits (PQLs)

The PQLs of the analytical methods are to be considered in relation to the SAC to confirm that the PQLs are less than the SAC. In cases where the PQLs are greater than the SAC, a discussion of this is provided.

4.1.6 Step 6 – Specify Limits on Decision Errors

To limit the potential for decision errors, a range of quality assurance processes are adopted. A quantitative assessment of the potential for false positives and false negatives in the analytical results will be undertaken with reference to Schedule B(3) of NEPM (2013) using the data quality assurance information collected.

Decision errors can be controlled through the use of hypothesis testing. The test can be used to show either that the baseline condition is false or that there is insufficient evidence to indicate that the baseline condition is false. The null hypothesis is an assumption that is assumed to be true in the absence of contrary evidence. For this investigation, the null hypothesis (H_0) is that the 95% UCL for the CoPC is greater than the SAC. The alternative hypothesis (H_A) is that the 95% UCL for the CoPC is less than the SAC. Alternative considerations are made regarding asbestos based on an assessment of multiple lines of evidence.

Potential outcomes include Type I and Type II errors as follows:

- Type Lerror of determining that the soil is acceptable for the proposed land use when it is not (wrongly rejects true H_0), includes an alpha (α) risk of 0.05; and
- Type II error of determining that the soil is unacceptable for the proposed land use when it is (wrongly accepts false H_0), includes beta (β) risk of 0.2.

UCLs will be considered acceptable where the UCL is below the SAC, the standard deviation of the data is less than 50% of the SAC and none of the individual concentrations are more than 250% of the SAC. However, where statistical analysis is applied in accordance with Step 5 via the calculation of UCL values, the potential for decision errors to occur will also be evaluated using the Combined Risk Value (CRV) method as outlined in Appendix E of the NSW EPA Sampling Design Part 1 – Application (2022)⁷ contaminated land guidelines.

⁷ NSW EPA, (2022). Sampling design part 1 - application. (referred to as EPA Sampling Design Guidelines 2022)

The CRV method will be used retrospectively to establish whether there is sufficient statistical power in the UCL.

Statistical analysis will not apply to asbestos or groundwater data, therefore these data will be assessed based on a multiple lines of evidence and risk-based approach.

Data Quality Indicators (DQI) for field and laboratory QA/QC samples are defined below. An assessment of the DQI's is to be made in relation to precision, accuracy, representativeness, completeness and comparability.

Field Duplicates

Acceptable targets for precision of field duplicates will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Trip Blanks and Rinsates

Acceptable targets for field blank and rinsate samples in this report will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to typical background concentrations in soils and published drinking water guidelines for waters.

Trip Spikes

Acceptable targets for trip spike samples will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data will be assessed against the laboratory QA/QC criteria. These criteria are developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the typical limits is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics; and
- 60-140% recovery acceptable for organics.

Surrogate Spikes

• 60-140% recovery acceptable for general organics.

Method Blanks

• All results less than PQL.

E32976PTrpt3-SAQP

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence will be reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is to be undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, we will adopt the most conservative concentration reported.

4.1.7 Step 7 - Optimise the Design for Obtaining Data

The most resource-effective design will be used in an optimum manner to achieve the investigation objectives. The investigation has been designed considering available information however, adjustment of the investigation design can occur following consultation or feedback from project stakeholders. For this investigation, the design was optimised via consideration of the various lines of evidence used to select the sample locations, the media being sampled, and also by the way in which the data will be collected. The sampling plan and methodology are outlined in the following sub-sections.

4.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology proposed for the DSI is outlined in the table below:

Aspect	Input
Sampling	Samples for the DSI will be collected from 15 grid-based locations (BH101, BH103, and BH107 to
Density	BH119) as shown on the attached Figure 2. This number of locations meets the minimum sampling
	density for hotspot identification, as outlined in the NSW EPA Sampling Design Part 1 – Application
	(2022) ⁸ contaminated land guidelines.
Sampling Plan	The sampling locations will be placed on a systematic plan with a grid spacing of approximately
	15m between sampling location. A systematic plan is considered suitable to identify hotspots to a
	95% confidence level and calculate UCLs for specific data populations (UCLs will only be applied
	where appropriate and in accordance with the DQOs).
Set-out and	Sampling locations will be set out using a tape measure and/or hand-held GPS unit (with an
Sampling	accuracy of approximately ±0.01m). In-situ sampling locations will be checked for underground
Equipment	services by an external contractor prior to sampling.
	Samples will be collected using a combination of a hand auger and drill rig equipped with spiral
	flight augers (150mm diameter). Soil samples will be obtained from a Standard Penetration Test
	(SPT) split-spoon sampler, and/or directly from the auger.
Sample	Soil samples will be obtained in accordance with our standard field procedures. Soil samples will
Collection and	be collected from the fill and natural profiles based on field observations. The sample depths will
Field QA/QC	be shown on the logs included in the DSI report.
	Soil samples for contamination testing will be placed in glass jars with plastic caps and Teflon seals
	with minimal headspace. Samples for asbestos analysis will placed in zip-lock plastic bags.

Table 4-1: Proposed DSI Soil Sampling Plan and Methodology

⁸ NSW EPA, (2022). *Sampling design part 1 - application*. (referred to as EPA Sampling Design Guidelines 2022)

Aspect	Input
	Where Sampling for PFAS occurs, JKE will complete a pre-fieldwork checklist to document that additional checks occur so that the potential for any interference or cross contamination of PFAS samples is minimised. During sampling, soil at selected depths will be split into primary and duplicate samples for field QA/QC analysis. The field splitting procedure includes alternate filling of the sampling containers to obtain a representative split sample. Homogenisation of duplicate samples will not occur to
	minimise the potential for the release of volatile organic compounds.
Field Screening	 A portable Photoionisation Detector (PID) fitted with a 10.6mV lamp will be used to screen the samples for the presence of volatile organic compounds (VOCs). PID screening for VOCs will be undertaken on soil samples using the soil sample headspace method. VOC data will be obtained from partly filled zip-lock plastic bags following equilibration of the headspace gases. PID calibration records will be maintained for the project. The field screening for asbestos quantification will include the following: A representative bulk sample (approximately 10L sample, to the extent achievable based on sample return) is to be collected from fill at 1m intervals, or from each distinct fill profile. The quantity of material for each sample may vary based on the return achieved using the auger. The bulk sample intervals will be shown on the borehole logs; Each sample will be weighed using an electronic scale; Each bulk sample will be passed through a sieve with a 7.1mm aperture and inspected for the presence of fibre cement. If the soil are cohesive in nature, the samples will be subsequently placed on a contrasting support (blue tarpaulin) and inspected for the presence of fibre cement or any other suspected asbestos materials will be noted on the field records; and If observed, any fragments of fibre cement in the bulk sample will be collected, placed in a ziplock bag and assigned a unique identifier. Calculations for asbestos content will be undertaken based on the requirements outlined in Schedule B1 of NEPM (2013), as summarised in Section 5.1.
7	thereafter, with a minimum of one sample per 1m depth of each fill profile.
Decontami- nation and	Sampling personnel will use disposable nitrile gloves during sampling activities. Re-usable sampling equipment will be decontaminated between sampling events using a Decon and potable water
Sample Preservation	solution, followed by a rinse in potable water.
	Soil samples will be preserved by immediate storage in an insulated sample container with ice. On completion of the fieldwork, the samples may be stored temporarily in fridges in the JKE warehouse before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard chain of custody (COC) procedures.

4.3 Groundwater Sampling Plan and Methodology

The groundwater sampling plan and methodology proposed for the DSI is outlined in the table below:

Aspect	Input
Sampling Plan	Groundwater monitoring wells will be installed in BH203 (MW203), BH207 (MW207) and BH208
	(MW208). The wells will be positioned to establish background groundwater conditions at the
	site.
	Considering the topography and the location of the nearest down-gradient water body, MW203
	is considered to be in the up-gradient area of the site and expected to provide an indication of
	groundwater flowing onto (beneath) the site from the south to south-west. MW207 and MW208
	are considered to be in the intermediate to down-gradient area of the site and expected to
	provide an indication of groundwater flowing across (beneath) the site and beyond the down- gradient site boundary.
	gradient site boundary.
Monitoring	The monitoring well construction details will be documented on the appropriate borehole logs.
Well	The monitoring wells will be installed to depths of approximately 8mBGL.
Installation	
Procedure	The wells will generally be constructed as follows:
	 50mm diameter Class 18 PVC (machine slotted screen) installed in the lower section of the well to intersect groundwater;
	 50mm diameter Class 18 PVC casing installed in the upper section of the well (screw fixed);
	 A 2mm sand filter pack used around the screen section for groundwater infiltration;
	 A hydrated bentonite seal/plug used on top of the sand pack to seal the well; and
	• A gatic cover installed at the surface with a concrete plug to limit the inflow of surface water.
Monitoring	The monitoring wells will be developed after installation using a submersible electrical
Well	pump/dedicated disposable plastic bailer. During development, the following parameters will be monitored using calibrated field instruments:
Development	 Standing water level (SWL) using an electronic dip meter; and
	 pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) and redox potential (Eh)
	using a VSI Multi-probe water quality meter.
	Steady state conditions are considered to have been achieved when the difference in the pH
	measurements is less than 0.2 units, the difference in conductivity is less than 10%, and when the SWL is not in drawdown.
	In the event that groundwater in-flow is relatively slow, the development will continue until the
	wells are effectively dry.
X	
	The field monitoring records and calibration data will be included in the DSI report.
Groundwater	The monitoring wells will be allowed to recharge for no less than 48 hours after development.
Sampling	Prior to sampling, the monitoring wells will be checked for the presence of Light Non-Aqueous
_	Phase Liquids (LNAPL) using an inter-phase probe electronic dip meter.
	The monitoring well head space will be checked for VOCs using a calibrated PID unit. The
	samples will be obtained using a peristaltic pump/disposable plastic bailer.
	During sampling, the following parameters will be monitored using calibrated field instruments:
	 SWL using an electronic dip meter; and
	• pH, temperature, EC, DO and Eh using a YSI Multi-probe water quality meter.

Table 4-2: Proposed Groundwater Sampling Plan and Methodology

Aspect	Input
	Steady state conditions are considered to have been achieved when the difference in the pH measurements is less than 0.2 units, the difference in conductivity is less than 10%, and when the SWL was not in drawdown.
	Groundwater samples will be obtained directly from the single use PVC tubing and placed in the sample containers. Duplicate samples are to be obtained by alternate filling of sample containers. This technique is adopted to minimise disturbance of the samples and loss of volatile contaminants associated with mixing of liquids in secondary containers, etc.
	Groundwater removed from the wells during development and sampling will be transported to JKE in jerry cans and stored in holding drums prior to collection by a licensed waste water contractor for off-site disposal.
	The field monitoring record and calibration data will be included in the DSI report.
Decontaminant and Sample Preservation	The pump and inter-phase probe electronic dip meter will be decontaminated between monitoring wells using potable water (with rags and scrubbing brush), followed by a rinse with potable water. Detergents (such as Decon 90) will not be utilised during the decontamination process as they may result in interference during PFAS analysis. The groundwater sampling process utilises a peristaltic pump and single-use tubing, therefore no decontamination procedure for the sampling is considered necessary.
	The samples will be preserved with reference to the analytical requirements and placed in an insulated container with ice or ice bricks. On completion of the fieldwork, the samples may be temporarily stored in a fridge at the JKE office, before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard COC procedures.

4.4 Laboratory Analysis and Proposed Analytical Schedule

Samples will analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. The laboratory details are provided in the table below:

Samples	Laboratory
All primary samples and field QA/QC samples	Envirolab Services Pty Ltd NSW, NATA Accreditation
including intra-laboratory duplicates, trip blanks, trip spikes, field rinsate samples	Number – 2901 (ISO/IEC 17025 compliance)
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)

For the DSI, an allowance has been made for the following analysis:

- Up to 15 selected soil samples will be analysed for: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); PAHs; TRH; BTEX; OCPs and OPPs; PCBs; and asbestos (500ml);
- Up to six selected deeper soil samples will be analysed for: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); PAHs; TRH; and BTEX;
- Up to two representative fibre cement fragments, if found on or in soil, will be analysed for asbestos;
- Up to six selected soil samples for TCLP leachability analysis for PAHs and selected metals has been included to provide a preliminary waste classification for the off-site disposal of soil in accordance with

NSW EPA Waste Classification Guidelines - Part 1: Classifying Waste (2014). In the event this budget is not utilised for TCLP analysis, it may be utilised for additional soil analysis, where deemed appropriate; and

• Up to three groundwater samples (allowance of one per well per site) will be analysed for the following: heavy metals; TRH/BTEX; PAHs; volatile organic compounds (VOCs); per-and polyfluoroalkyl substances (PFAS); pH; and electrical conductivity (EC).

The soil analysis will generally target the fill soils and the first contact of natural soils. Deeper samples may be analysed based on the results of the shallow soils and site observations. A staged approach to soil sample analysis has been undertaken to allow for targeting areas based on the results of the initial analysis round.

APE-MOX APE-MOX

5 SITE ASSESSMENT CRITERIA (SAC)

The following SAC derived from the NEPM 2013 and other guidelines, as discussed in the following subsections, will be adopted for the DSI.

5.1 Soil

Soil data will be compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

5.1.1 Human Health

- Health Investigation Levels (HILs) for a 'residential with accessible soils' exposure scenario (HIL-A). These SAC also apply to primary schools;
- Health Screening Levels (HSLs) for a 'low-high density residential' exposure scenario (HSL-A & HSL-B), which also apply to primary schools. HSLs will be calculated based on conservative assumptions including a 'sand' type and a depth interval of 0m to 1m;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)⁹; and
- Asbestos will be assessed against the HSL-A criteria. A summary of the asbestos criteria is provided in the table below:

Guideline	Applicability						
Asbestos in Soil	The HSL-A criteria will be adopted for the assessment of asbestos in soil. The SAC adopted for						
	asbestos are derived from the NEPM 2013 and based on the Guidelines for the Assessment,						
	Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2021) ¹⁰ .						
	The SAC include the following:						
	 No visible asbestos at the surface/in the top 10cm of soil; 						
	 <0.01% w/w bonded asbestos containing material (ACM) in soil; and 						
	 <0.001% w/w asbestos fines/fibrous asbestos (AF/FA) in soil. 						
	Concentrations for bonded ACM concentrations in soil are based on the following equation						
	which is presented in Schedule B1 of NEPM (2013):						
	% w/w asbestos in soil = <u>% asbestos content x bonded ACM (kg)</u>						
	Soil volume (L) x soil density (kg/L)						
•	However, we are of the opinion that the actual soil volume in a 10L bucket varies considerably						
	due to the presence of voids, particularly when assessing cohesive soils. Therefore, each						
	bucket sample was weighed using electronic scales and the above equation was adjusted as						
	follows (we note that the units have also converted to grams):						
	% w/w asbestos in soil = <u>% asbestos content x bonded ACM (g)</u>						
	Soil weight (g)						

Table 5-1: Details for Asbestos SAC

⁹ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - *Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document*

¹⁰ Western Australian (WA) Department of Health (DoH), (2021). *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia*. (referred to as WA DoH 2021)

5.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for an 'urban residential and public open space' (URPOS) exposure scenario. The EILs will only be applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene will be increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines¹¹;
- ESLs will be adopted based on the soil type; and
- EILs for selected metals will be calculated based on the most conservative added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013) and published ambient background concentration (ABC) values presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹². This method is considered to be adequate for the Tier 1 screening.

5.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) will be considered.

5.1.4 Waste Classification

Data for the waste classification assessment will be assessed in accordance with the Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹³ as outlined in the following table:

Table 5-2: Waste Categories

Category	Description
General Solid Waste (non-putrescible)	 If Specific Contaminant Concentration (SCC) ≤ Contaminant Threshold (CT1) then Toxicity Characteristics Leaching Procedure (TCLP) not needed to classify the soil as general solid waste; and If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as general solid waste.
Restricted Solid Waste (non-putrescible)	If SCC \leq CT2 then TCLP not needed to classify the soil as restricted solid waste; and If TCLP \leq TCLP2 and SCC \leq SCC2 then treat as restricted solid waste.
Hazardous Waste	 If SCC > CT2 then TCLP must be undertaken to classify the soil as hazardous waste; and If TCLP > TCLP2 and/or SCC > SCC2 then treat as hazardous waste.
Virgin Excavated Natural Material (VENM)	 Natural material (such as clay, gravel, sand, soil or rock fines) that meet the following: That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; That does not contain sulfidic ores or other waste; and Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette.

¹¹ Canadian Council of Ministers of the Environment, (1999). *Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)* (referred to as the Canadian Soil Quality Guidelines)

 ¹² Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4.* Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission
 ¹³ NSW EPA, (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* (referred to as Waste Classification Guidelines 2014)

5.2 Groundwater

Groundwater data will be compared to relevant Tier 1 screening criteria in accordance with NEPM (2013), following an assessment of environmental values in accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (2007)¹⁴. Environmental values for the DSI include aquatic ecosystems, human uses (consumption, incidental contact and recreational water use), and human-health risks in non-use scenarios (vapour intrusion).

5.2.1 Human Health

- HSLs for a 'low-high density residential' exposure scenario (HSL-A/HSL-B). HSLs will be calculated based on the soil type and the observed depth to groundwater;
- Should groundwater be recorded at depths shallower than 2m, a site-specific assessment (SSA) for the Tier 1 screening of human health risks posed by volatile contaminants in groundwater will be undertaken. The assessment will include a selection of alternative Tier 1 criteria that are considered suitably protective of human health. These criteria are based on drinking water guidelines and have been referred to as HSL-SSA. The criteria are based on the following:
 - Australian Drinking Water Guidelines 2011 (updated 2021)¹⁵ for BTEX compounds and selected VOCs;
 - World Health Organisation (WHO) document titled Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality (2008)¹⁶ for petroleum hydrocarbons. We have conservatively adopted the value of 100µg/L for TRH F1 and F2;
 - USEPA Region 9 screening levels for naphthalene (threshold value for tap water); and
 - > The use of the laboratory PQLs for other contaminants where there are no Australian guidelines.
- The ADWG 2011 will be multiplied by a factor of 10 to assess potential risks associated with incidental/recreational-type exposure to groundwater (e.g. within down-gradient water bodies, with bore water used for irrigation, or with seepage water during construction). These have been deemed as 'recreational' SAC;
- The recreational water quality guideline value will be adopted for PFAS assessment based on Table 1 in NEMP 2020¹⁷; and
- ADWG 2011 criteria will be adopted as screening criteria for consumption of groundwater.

5.2.2 Environment (Ecological - aquatic ecosystems)

Groundwater Investigation Levels (GILs) for 95% protection of freshwater species will be adopted based on the Default Guideline Values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018)¹⁸. The 99% trigger values will be adopted where required to account for bioaccumulation. Low

¹⁴ NSW Department of Environment and Conservation, (2007). *Guidelines for the Assessment and Management of Groundwater Contamination*.

¹⁵ National Health and Medical Research Council (NHMRC), (2021). *National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011* (referred to as ADWG 2011)

¹⁶ World Health Organisation (WHO), (2008). *Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality* (referred to as WHO 2008)

¹⁷ Heads of EPAs Australia and New Zealand (HEPA). PFAS National Environmental Management Plan Version 2.0 - January 2020 (referred to as NEMP 2020)

¹⁸ Australian and New Zealand Governments (ANZG), (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia (referred to as ANZG 2018)

and moderate reliability trigger values will also be adopted for some contaminants where high-reliability trigger values don't exist.

The ecological (interim freshwater) water quality guidelines will be adopted for PFAS assessment based on NEMP 2020, based on 95% protection (slightly to moderately disturbed systems).

APENDIX

6 DSI REPORTING REQUIREMENTS

A DSI report is to be prepared presenting the results of the investigation, generally in accordance with the NSW EPA Consultants Reporting on Contaminated Land, Contaminated Land Guidelines (2020)¹⁹.

PU

¹⁹ NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

7 LIMITATIONS

The report limitations are outlined below:

- This SAQP was developed based on the information available, as documented in this plan. There is always a potential that the proposed investigation will identify contamination impacts (actual or potential) that trigger a need for further investigation;
- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The plan is based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The preparation of this report has been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Investigation Limitations

Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

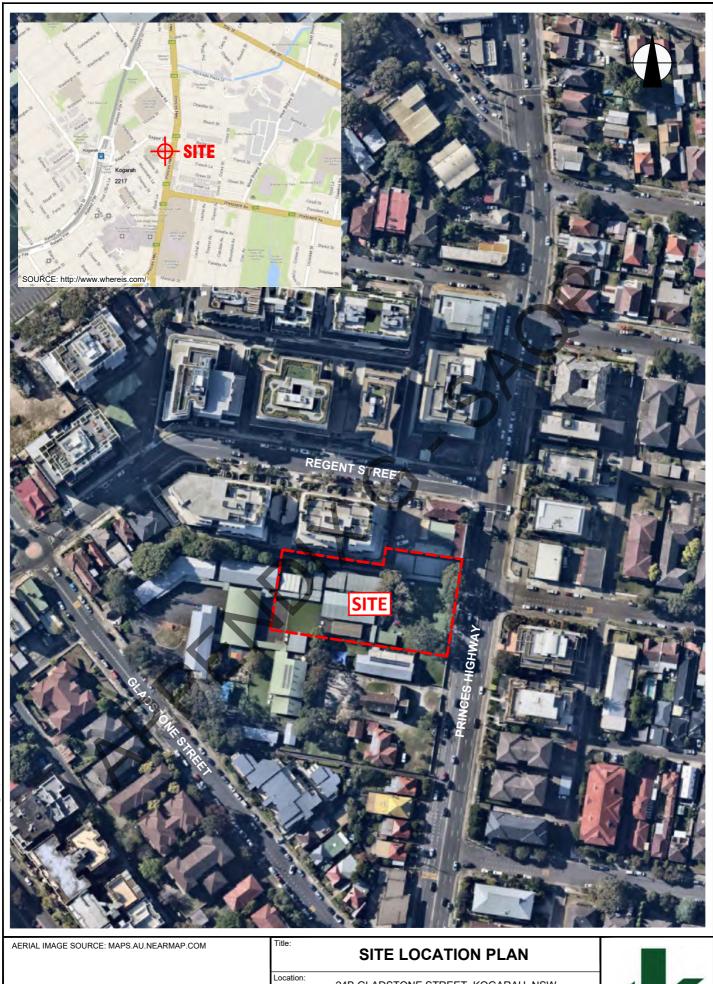
Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Investigation Report

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.


Read Responsibility Clauses Closely

Because an environmental site investigation is based extensively on Judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claums being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

Appendix A: Report Figures

24B GLADSTONE STREET, KOGARAH, NSW

JKEnvironments

Project No:

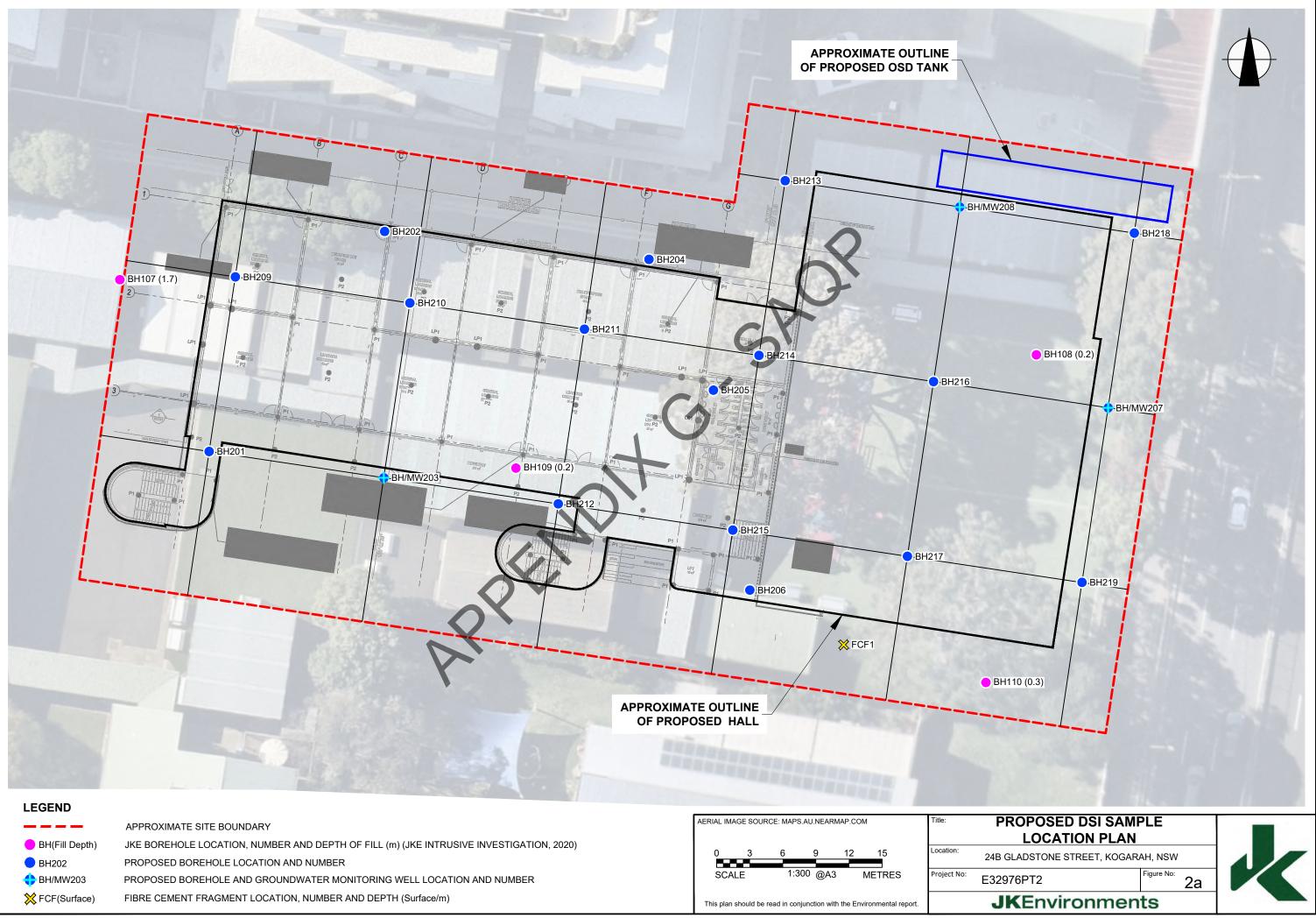

E32976PT2

Figure No:

1

© JK ENVIRONMENTS

This plan should be read in conjunction with the Environmental report.

© JK ENVIRONMENTS

Appendix B: Report Explanatory Notes

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)²⁰ methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)²¹. The NEPM (2013) is consistent with these documents.

A. <u>Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)</u>

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: "The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).

B. <u>Precision</u>

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. <u>Accuracy</u>

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. <u>Representativeness</u>

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;

 ²⁰ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)
 ²¹ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. <u>Comparability</u>

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. <u>Blanks</u>

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. <u>Matrix Spikes</u>

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result - Sample Result) x 100 Concentration of Spike Added

I. <u>Surrogate Spikes</u>

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{\{(D1 + D2)/2\}}$

Appendix C: Guidelines and Reference Documents

Australian and New Zealand Environment Conservation Council (ANZECC), (2000). Australian and New Zealand Guidelines for Fresh and Marine Water Quality

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Heads of EPAs Australia and New Zealand (HEPA), (2020). PFAS National Environmental Management Plan Version 2.0 - January 2020

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

National Health and Medical Research Council (NHMRC), (2021). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

NSW EPA, (2022). Sampling design part 1 - application, Contaminated Land Guidelines

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW)

World Health Organisation (WHO), (2008). Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality

Western Australia Department of Health, (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia

Calibration and Groundwater Field Sheets

roject:		structuro NC	SW/			Job N	lo.:	E329	976BT2
ocation:	Proposed Alt	structure NS	nd Additions		1	Well N	17778 Sala		mw203
	Kogarah Pub	olic School,	24B Gladstone Str	eet, Kogarah	n, NSW	Depth	n (m): +		12m
ELL FINISH	ETAILS								
	(Gatic Cover		Standpip	e 🗌		Other (de	escribe)	
VELL DEVELO	PMENT DET	AILS		Amp	SWL - Befo	re (m):		3.20	2
lethod:			Development	rump	Time - Befo	190.90			Lam
late:			16/1/25		SWL - After			10.3	
Indertaken By			VR		Time - Afte	C.0.0005		9.44	
fotal Vol. Rem			~1002						
PID Reading (opm):		0.9						
Comments: DEVELOPMEN	TMEASURE	MENTS				1			E t (m)()
Volume Re (L)	moved	SWL	Temp (°C)		DO (mg/L)	EC (µS/cm)		рН	Eh (mV)
			21.9	2	1.0	472	5.	96	3.6.2
11			20.9	13	3.2	918	5	.67	40.7
51			20.9		9,9	945.		65	21.0
1011			20.8		7,4	944		64	7.07
15L	2011	5.770	20.9		2.5	943	5 5	. 64	3.7
25	20.00	3.4-7m	20.8		0,2	969		57	41.6
	_		20.9	3	9.3	1007	5	,52	40.3
30			21.9	-	7.3	1055	5		33.9
35		8.07m	21.0	1	5.4	1097			27.3
40		01.0 10	20.8	2	27	858		.42	46.3
50			20.9	煮	18.0	835		5.49	38.3
55			20.7	1	3,3	575		5.58	32.0
60		10,94m	20.4		5.0	639		5.54	48.2
65			20,5		0. 0	1212		5.67	51.0
70 45	tcher) Bei	lina	20.6		5.5	1183			40.3
75-		10 DAM			4.6	1240		°41	14.8
20	4	9.4/m	20.4		. 6	1260		.45	16.3
85			20,2		0,4	1 6 1 10		42	15.3
90		10,52		2	7.0	1250	5.	42	39.6
95		~	20,3		,2			38	53,7
100		10.32	20.4	15	, 0	1256		020	
		1							

k

.

.

1.

í

	C . h a al lafe	rastructure NS	SIM/				Job No.:		E329	976BT2		
ent:	School Intr	Alterations an	Additions				Well No.:			MW207		
ject: ation:	Kogarah P	ublic School, 1	24B Gladstone Str	reet, Kogarah	, NSW		Depth (m)):		12.70m		
#20030112			<u>(8</u>									
LL FINISH	DETAILS			T						2		
	-	Gatic Cover		Standpipe	, 🗋	*		Other (des	cribe)			
	OPMENT D	ETAILS		1 Durand	SWL - Befor	re (m):			3.66n	n		
thod:			Davelopme	VE FOWE	Time - Befor				2.180	m		
te:			16/1/25		SWL - After	S1093	(a)			4.95m		
dertaken B			VK		Time - After	A DOMESTIC			2	.44pm		
tal Vol. Rei			0.0		Digital terror dependence	WE TEE						
D Reading	(ppm):		0.0									
WELOPME	ENT MEASUR	REMENTS				1	EC	_	pH	Eh (mV)		
Volume F	Removed	SWL	Temp (°C)	(DO (mg/L)	(μ	ıS/cm)					
	-/	3.77m	22,1	5	3.2	-	519		53	100.5		
F		3.110	01.2	19	7.7		5.3	5.		63.9		
10		+	21.4		50-7		121	5.		62.7		
15			21.5	.15	51/		133		95	60,3		
20		4.2.4m	21.5	13,	.7		147	the second se	95	\$8.6		
25			21.3		10.1		oiz_		35	60.7		
20			21.4	3	6.7	98			.87	60.7		
35			21.4	. 3	35,1		79	30	.87	66.6		
40		4.51m	21.4	32			68	5	182	52.4		
45			21.3		9 +		10+		84	54.3		
50			21.3		5.7		124	5	94	5607		
<5			21.3		5.3		522	5	.96	58.1		
60		4.70m	21.3		22.1	8			-81	57.2		
65			21.2		14.9		90	5	.21	52.8		
70	1	1			24,8		195		.81	59.9		
75		11.20			3.1		50	5	.82	60.1		
80		4.93m	21.2		5.0		032	5.	77	59.1		
85		- 2	21.2		4.6	10	011		. 78	6.71		
90			A	1	1.2		768		,20	63.8		
95		1.95	21.2	- 7	4.3	C	160	S	.30	63.7		
100		4.95m	411-		1.5				_			
Comments	Odours (¥f		APL/PSH (YES-(NO) Sheen (YES INO), ST	ceady Stat	e Achieve	d (YES / NC))			
omments SI Used: "	::Odours (¥E YS) [100 N	Fast rech	NO), Sheen (? Large, ~	res (NO), st ~ 100L Change	renv	e Achieve	d (YES / NO durin SWL	")] devi	elgauent		
Tested By:		VR	Rer	marks:								
Date Tester		16/1/25	- St - Di	Steady state con Difference in the	e pH less than 0					nan 10% and SWL ctively dry		
Chocked P	tur a	KE		inimum 3 moni	Ronny wear void	11163 60134	201 0					
Checked B	y. 🥐	12.02										

Client:	School Int	frastructure N	1SW					Job No.:		E32	976BT2
Project:	-	Alterations a		6				Well No.:		F	mw208
Location:	KOGARAH	I PUBLIC SCH	00L, 24B GL	ADSTON	IE STREET,	KOGARAH,	ARAH, NSW Depth (m):				9.4
VELL FINISH	DETAILS							101 1	C.	_	
		Gatic Cove	r 🗶		Standpipe			12.0	Other (des	scribe)	÷
VELL DEVEL	OPMENT D	ETAILS						and a	Mi	ar.	
lethod:			Dev. PL	mo		SWL – Bef		1000	Ser.	1-48	
Date:			11/2/2	25		Time – Bel					OAM
Indertaken E	-		VR			SWL - Afte	er (m):	1	1.0	8.10	m
otal Vol. Re			~30L			Time - Aft				10.4	bam
ID Reading	(ppm):		0.0				1 Bener				
Comments:	NT MEAST	DEMENTO					-	2.8			
EVELOPME Volume R (L	lemoved	SWL	Temp (°C	C)		DO ng/L)		EC S/tem)	p	Н	Eh (mV)
152/0	ailer	1.60m	25.9		78	3-9	24-	17.	7 6.		307.0
56	CARD	1001	23.0	>	83			7.7	6.0		A1.1
IDL			23.1			3.2	19	9.7	6.	16	114.3
151			23	7	71		21			00	109.1
201		7.33	22.7		20	3.4		4.4.		89	109.4
251		1.00	7.2			0.1		206.1		79	99.2
302		810	22.5			4.5	18:		5.	83	105.6
200		- and				410	1.0.2				100.0
			Develor	00)	Malal	affect	ino/a	dry			
			percisi		Sart L'IT	- aprila	JJ	1			~ 9.9
						-					1
									1		
					1						
					-						
-	-										
			0								
			3		-						
omments:O	dours (YES	CNOT, NA	PL/PSH (YE	1 (NO))	Sheen (YE	8- / NO)) St	eady State	Achieved ()	EG /(NO)		
SI Used: \bigvee_{i}	5) 1	sill loco		\cup		0					
		LAN	le le	Remarks	:						
ested By:	Tested By: Date Tested: II/2/25										
		11/2/25	-	Steady s Differen	state conditi	less than 0.	2 units, diffe	erence in the	conductivei	ty less thar	10% and SWL
			-	Steady s Differen stable/not	state conditi ce in the pH t in drawdow	less than 0. /n		erence in the unless well			

PID FIELD CALIBRATION FORM

lient: School Infra	structure NSW					
Project: Proposed A	Iterations and Additions					
ocation: Kogarah Pul	blic School, 24B Gladstone Street,	, Kogarah, NSW				
ob Number: E32976BT2						
		PID				
Make: MiniRAE Lite+	Model: PGM7300	Unit: PID 4	Date of calibrati	last factory on:		
Date of calibration:	15/1/25	Name of Calibrator:	ΤĹ			
Calibration gas: Iso-butylen		Calibration Gas Concentration	:	100.0 ppm		
	00-6 ppm	Error in measured reading:	± 0.6	ppm		
Measured reading Acceptat						
	0	PID				
Make: MiniRAE Lite+	Model: PGM7300	Unit:	Date of calibrati	last factory ion:		
Date of calibration:		Name of Calibrator:		G		
Calibration gas: Iso-butyler	ne	Calibration Gas Concentration	0	100.0 ppm		
Measured reading:	ppm	Error in measured reading:	±	ppm		
Measured reading Acceptal	ble (Yes/No):					
		PID				
Make: MiniRAE Lite+	Model: PGM7300	Unit	Date of calibrat	last factory ion:		
Date of calibration:		Name of Calibrator:				
Calibration gas: Iso-butyler	ne	Calibration Gas Concentration	n:	100.0 ppm		
Measured reading:	ppm	Error in measured reading:	±	ppm		
Measured reading Accepta	ble (Yes/No):					
		PID				
Make: MiniRAE Lite+	Model: PGM7300	Unit:		Date of last factory calibration:		
Date of calibration:		Name of Calibrator:		*		
Calibration gas: Iso-butyle	ne	Calibration Gas Concentration	n:	100.0 ppm		
Measured reading:	ppm	Error in measured reading:	±	ppm		
Measured reading Accepta						
measured reading necepta		PID				
Make: MiniRAE Lite+	Model: PGM7300	Unit:	Date of calibrat	f last factory tion:		
Date of calibration:		Name of Calibrator:				
Date of camp. across		Calibration Gas Concentration	n:	100.0 ppm		
Calibration gas: Iso-butyle	ene	100				

WATER QUALITY METER CALIBRATION FORM

Client:	School Infrastructure NSW						
Project:	Proposed Alterations and Addition	s					
ocation:	Kogarah Public School, 24B Gladsto	one Street, Kogarah, N	SW				
lob Number:	E32976BT2						
		D	ISSOLVED OXYGEN				
Make: YSI Pro	ffessional Plus (Pro Plus)		Model: YS1 (
Date of calibr	ation: 15/1/25		Name of Calibrator: 🛛 🌱	nif kar			
Span value: 7	0% to 130%						
Measured val	ue: 104.6						
Measured rea	ading Acceptable (Yes/No):						
			рН				
Make: YSI Pro	offessional Plus (Pro Plus)		Model: YS1 1				
Date of calibr	ation: 15/1/25		Name of Calibrator: 💦 🖏	rt L			
Buffer 1: Theo	oretical pH = 7.01± 0.01		Expiry date: 05/25	Lot No: EB0 40624			
Buffer 2: The	oretical pH = 4.01± 0.01		Expiry date: 05/25	Lot No: CD 250624			
Measured rea	ading of Buffer 1: 7.00	0					
Measured rea	ading of Buffer 2: 4,00			A			
Slope:			Measured reading Accept	able (Yes/No):			
			EC				
Make: YSI Pro	offessional Plus (Pro Plus)		Model: 7511				
Date:	15/1/25	Name of Calibrator	: STL	Temperature: 25. 7 °C			
Calibration so	olution: AR - Conductivity Solution	on	Expiry date: 07/25	Lot No: CW230524			
Theoretical c	onductivity at temperature (see	solution container	1: 1413 - 1440	μS/cm			
Measured co	nductivity: 1434 µS/cm		Measured reading Acceptable (Yes/No):				
			REDOX				
Make: YSI Pro	offessional Plus (Pro Plus)		Model: 7511				
Date of calib	ration: \5/1/25			TL			
Calibration so	olution: HANNA INSTRUMENTS I	INC HI7021L	Expiry date: 1/25	Lot No: 01920			
Theoretical r	edox value:	240mV					
Measured re	dox reading: 240 mV		Measured reading Accept	able (Yes/No):			

WATER QUALITY METER CALIBRATION FORM

REET, KOGARAH, NSW						
DISSOLVED OXYGEN						
Model: VSV 1						
Name of Calibrator: VR						
рН						
Model: VSI						
Name of Calibrator: VI2	Name of Calibrator: VI2					
Expiry date: 6/25	Lot No: EB040624					
Expiry date: 3/25	Lot No: 10030124					
Measured reading Accept	Measured reading Acceptable (Yes)					
EC						
Model: YSI 1						
ibrator: VR	Temperature: 23 °C					
Expiry date: 4/25	Lot No: CZ071223					
ntainer): 1359	μS/cm					
Measured reading Accept	Measured reading Acceptable (((es/No)):					
REDOX						
Model: YS1 1						
Expiry date: 7/25	Lot No: 9759					
Measured reading Accept						
	Model: VSI Name of Calibrator: VR Model: VSI Name of Calibrator: VR Expiry date: 6 /25 Expiry date: 3/25 Measured reading Accept EC Model: VSI ibrator: VR Expiry date: 4/25 ntainer): 1359 Measured reading Accept REDOX Model: VSI Name of Calibrator: VR					

PID FIELD CALIBRATION FORM

Client: School Infras	structure NSW		
Project: Proposed Alt	erations and Additions		
Location: KOGARAH PL	JBLIC SCHOOL, 24B GLADSTONE ST	TREET, KOGARAH, NSW	
Job Number: E32976BT2			
		PID	
Make: MiniRAE Lite+	Model: PGM7300	Unit: PID3	Date of last factory calibration:
Date of calibration: 10/2	25	Name of Calibrator: VR	
Calibration gas: Iso-butylene		Calibration Gas Concentration:	100.0 ppm
Measured reading:	101.2 ppm	Error in measured reading:	± /🎝 ، ۲ ppm
Measured reading Acceptable	e (Yes)/Kla):		
	0	PID	
Make: MiniRAE Lite+	Model: PGM7300	Unit:	Date of last factory calibration:
Date of calibration:		Name of Calibrator:	
Calibration gas: Iso-butylene	1	Calibration Gas Concentration:	100.0 ppm
Measured reading:	ppm	Error in measured reading:	E ppm
Measured reading Acceptable	e (Yes/No):		
		PID	
Make: MiniRAE Lite+	Model: PGM7300	Unit:	Date of last factory calibration:
Date of calibration:		Name of Calibrator:	
Calibration gas: Iso-butylene		Calibration Gas Concentration:	100.0 ppm
Measured reading:	ppm	Error in measured reading: ±	± ppm
Measured reading Acceptable	e (Yes/No):		
		PID	
Make: MiniRAE Lite+	Model: PGM7300	Unit:	Date of last factory calibration:
Date of calibration:	/	Name of Calibrator:	
Calibration gas: Iso-butylene	/	Calibration Gas Concentration:	100.0 ppm
Measured reading:	ppm	Error in measured reading:	± ppm
Measured reading Acceptable	e (Yes/No):		
/	/	PID	
Make: MiniRAE Lite+	Model: PGM7300	Unit:	Date of last factory calibration:
Date of calibration:		Name of Calibrator:	
Calibration gas: Iso-butylene		Calibration Gas Concentration:	100.0 ppm
Measured reading:	ppm	Error in measured reading:	± ppm
Measured reading Acceptable	e (Yes/No):		

Client:	School Infra	structure NS	W			Job No.:	E329	76BT2	
Project:	Proposed Al	terations and	d Additions			Well No.: mv20			
ocation:	KOGARAH P	UBLIC SCHO	OL, 24B GLADSTONE STREE	T, KOGARAH	, NSW	NSW Depth (m):			
VELL FINISH			Standpipe			l	Other (descrit	20)	
Gatic Cover			Standpipe				Other (descrit		
Method:		Devictor	he fump		SWL - Befo	ore:	4.97m		
Date:		13/2/05			Time – Befo	оге:	9,45am		
Jndertaken By:		VK		+	Total Vol R	emoved:	~ 6.56	tree	
Pump Program No:					PID (ppm):		0.0	u Ca	
PURGING / SAMPLING ME	ASUREMENT						0.0		
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)	
/	5.05m	0.5 L	Bailer	22.4	29.0	420.0	4.57	237.	
10.01am/3mins	5.19m	1.5L		23.2	9.5	M34	4.93	72.5	
10.04am/6mins		2.52	flow rate reduced	23.0	6.5	1230	4.75	65.1	
0.07am 19mins		3.56		23.1	6.0	1248	4.95	61.1	
	5.32m		Flow rate neduced	23.3	5.8	1238	4.96	60.1	
0.13am 115mins	5.33m	41	Tow furc reould	23.7	5.8	1226	4.93	60.5	
0.16cm/18mins	5.37m	4.52	Flow rate reduced	23.8	6.0	1215	4.94	61.0	
0.19an/21mins	5.36m	56	The face in order	23.9	5.4	1215	4.94	60.9	
0.22am/24mins	ale and a second se	5.5L		23.9	5.5	1209	4.94	62.7	
	5.36m	66		24.6	5.7	1199	4.93	63.5	
0.28am /30mins		6.56		24.8	5.7	1192	4.92	64.9	
U. ABRAM / JUMINS	1.000	<u> </u>	> Steady State	Achieve	1	1. 10			
			Started Sampling	1 cnieva	×			10	
			Sance Scomption						
								-	
								-	
							_	-	
								-	
								-	
				•					
	1 400 4100		NO) Sheen (YE6 / NO) Stea	du Diata Arti	aved (VEO)				
							(I)		
ampling Containers Use	08		$4x$ BTEX vials (40mL), $1 \times H$						
W/L /	Sinht	x unpreserve	d plastic (250mL), Ox steril	e plastic (500)	mL), <u>(</u> x No	teflori plastic (60r	nL)		
Slused: VS/ /	Jugne	Sulphin	7C Smell						
ested By: Vp			Remarks: - Steady state conditions						
Date Tested: 13/2/25			- difference in the pH less t	han 0.2 units	, difference	in conductivity le	ss than 10%	and SWL	
Checked By: KT			stable/not in drawdown						

Client:	School Infras	ool Infrastructure NSW Job No.:					E329	76BT2
Project:	Proposed Al	terations and	Additions			Well No.:		MW207
Location:	KOGARAH P	UBLIC SCHOO	OL, 24B GLADSTONE STRE	, NSW	Depth (m):		9m	
WELL FINISH							1	
Gatic Cover	under a	ashro tur	C. Standpip	9			Other (describ	oe)
WELL PURGE DETAILS: Method:		Do int 1			SWL - Befo	re:	3.84m	
Date:			tic Pomp		Time – Befo	ore:	7.49am	
Jndertaken By:		13/2/25			Total Vol Re		~ 12 Litr	
Pump Program No:		VR And Ch	10 M		PID (ppm):		0.0	ved
PURGING / SAMPLING MI			มพ		(PP-1)			
Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	pH	Eh (mV)
/	3.86m	0.756	baile	22.3	84.0	418.5	4.56	236.7
3.07am/ 3mins	3.89m	26	high snad and	21.8	5,7	1284	5.15	104.3
8. Can / 6mins	3.88m	46	high recharge	21.7	2.7	1359	5.20	919
8.08 / 9min	3 88m	66	9 U	21.7	2.1	1389	5.22	88.0
8.11 1/2mins	3.88m	86		21.7	1.5	1390	5.22	87.3
8.14 /15mins	3.82m	IOL		21.7	1.3	1385	5.22	87.1
8.17an/12mi05		122		21.6	1.0	1385	5.22	
	- Mart	100	Slendy State H	thiand				
	1		-> Stated sam					
			2014100 300	113	-		- 00	
				(a)				
					-			
					2			
		r			1			
				-				
								-
				-				-
				-				-
								-
Comments: Odours (VEG		I/PSH (MES-)	NO), Sheen (1995 / (10); S	Leady State Ach	ieved (YES' /	-NO)		
			8x BTEX vials (40mL), 2x				5mL).	
Sempling opticallers USE			d plastic (250mL), Ox ste					VOUPZOI
(Slused: YS) (L	high m	charge on high s	peed set	ting			·
Tested By: Y/L		- Juliec	Remarks:					
Date Tested: 13/2/25			- Steady state conditions					
51412			- difference in the pH less stable/not in drawdown	s than 0.2 units	s, difference	in conductivity le	ess than 10%	and SWL

1

Client:	School Infras	structure NSV	N			Job No.:	E329	76BT2
Project:	Proposed Alt	terations and	Additions			Well No.:		MW208
Location:			DL, 24B GLADSTONE STREE	, KOGARAH	, NSW	Depth (m):		9m
WELL FINISH								
X Gatic Cove	r		Standpipe				Other (describ	be)
WELL PURGE DETAILS: Method:		0 1 1	1 · · · ·		SWL - Bef	ore:	6.34m	
Date:			be pump		Time – Bef	CARLO	8.47am	
		13 2 2	5		Total Vol R		- 10 Li	trac
Undertaken By:	· · · · · · · · · · · · · · · · · · ·				PID (ppm):			crea
		10W Flow	~		Pite (ppin).		1.0	
PURGING / SAMPLING M Time (min)	SWL (m)	Vol (L)	Notes	Temp (°C)	DO (mg/L)	EC (µS/cm)	рН	Eh (mV)
/	6.59m	0.75L	Bailer	22.0	6.1	888	4.71	206.4
85bam/ 3mins	6.75m	26		21.5	4.0	877	4.71	208.9
8,59am/ 6mins	6.91m	41	Flow rate reduced	21.1	2.6	875	4.75	208.6
7.02am/9mint	1.00m	5L	NOW TALK ICCNO20	21,6	3.)	885	4.78	202.9
9.65 am 112 mins	7.07m	6L	Flow rate reduced		2.9	895	4.80	198.4
9.08am / 15mins		6.5L	Tion rate tonder	22.4	3.4	904	4.83	195.7
9.11am / 18mins	1 1	71		22.6	3.6	9/2	4.82	194.7
9.124am / 2mins	7.10m	7.5L		22.6	3.8	913	4.82	194.4
9. 17am / 24mins		81	flow rate reduced	22.8	3.8	918	4 85	188.5
9.20am/27mins	7.12m	8.5L	Tow rate (10000)	23.2	4.4	933	4.88	1830
1. 200111 / 2 (mini	7.12m	91		23.3	4.4	941	4.90	180.7
	77(0.00	10	Stendy State ach	iprod				
		Ĺ	Stated Sam	11'00-				
			- STATED Samp	U				
				.0.1				
				C.				
Comments: Odours (Val	NOD NAP	PL/PSH (YES)	NO), Sheen (366 / NO), Ste	ady State Acl	hieved (YES	120)		- 0
			4x BTEX vials (40mL), /x H				25mL),	
sempling containers ba			ed plastic (250mL), x steri					
YSI used: VSI]	r		dium silt load					
Tested By: V 12			Remarks:					
Date Tested: 13/2/25	-		- Steady state conditions				less these 400/	and SMI
			- difference in the pH less	man 0.2 unit	s, αιπ eren ce	e in conductivity	1655 (1811 10%)	and OWL

11

•

Ś.

Ę.

WATER QUALITY METER CALIBRATION FORM

Client: School Infrastructure NSW	
Project: Proposed Alterations and Additions	
ocation: KOGARAH PUBLIC SCHOOL, 24B GLADS	NE STREET, KOGARAH, NSW
ob Number: E32976BT2	
	DISSOLVED OXYGEN
Make: YSI Proffessional Plus (Pro Plus)	Model: \\{ / \
Date of calibration: $ 3 2 25$	Name of Calibrator: V/2
pan value: 70% to 130%	
Neasured value: 91.47.	
Measured reading Acceptable (Ye) (Mo):	
	рН
Make: YSI Proffessional Plus (Pro Plus)	Model: YS1 1
Date of calibration: 13/2/25	Name of Calibrator: VR
Buffer 1: Theoretical pH = 7.01± 0.01	Expiry date: 6/25 Lot No: EB040624
Buffer 2: Theoretical pH = 4.01± 0.01	Expiry date: 3/25 Lot No: 00030124
Aeasured reading of Buffer 1: 7.00	
Aeasured reading of Buffer 2: 3.99	
lope:	Measured reading Acceptable (Nes/No):
	EC
Make: YSI Proffessional Plus (Pro Plus)	Model: YS) /
Date: 13/2/25 Name	of Calibrator: YP Temperature: 26 °C
alibration solution: AR - Conductivity Solution	Expiry date: 4/25 Lot No: C 207/223
heoretical conductivity at temperature (see solu	on container): I440 μS/cm
Aeasured conductivity: 1440 µS/cm	Measured reading Acceptable (Ye) And):
	REDOX
Aake: YSI Proffessional Plus (Pro Plus)	Model: YS) /
Date of calibration: 3 2 25	Name of Calibrator: V/2
Calibration solution: HANNA INSTRUMENTS INC H	021L Expiry date: 7 25 Lot No: 9759
heoretical redox value: 240m	
Aeasured redox reading: کو 40. نو mV	Measured reading Acceptable (Yes/No):

PID FIELD CALIBRATION FORM

School Infrastructure NSW Client: Proposed Alterations and Additions Project: Location: Kogarah Public School, 24B Gladstone Street, Kogarah, NSW Job Number: E32976BT2 PID Date of last factory Unit: PID3 Model: PGM 7300 Make: Honeywell calibration: Name of Calibrator: YR Date of calibration: 12/2/25 Calibration gas: Iso-butylene 100.0 ppm Calibration Gas Concentration: Error in measured reading: O.3 ppm 100.3 ppm ± Measured reading: Measured reading Acceptable (Ye)/No): PID Date of last factory Unit: Make: Model: calibration: Name of Calibrator: Date of calibration: Calibration gas: Iso-butylene Calibration Gas Concentration: 100.0 ppm Error in measured reading: ± ppm Measured reading: ppm Measured reading Acceptable (Yes/No): PID Date of last factory Unit: Make: Model: calibration: Name of Calibrator: Date of calibration: Calibration Gas Concentration: 100.0 ppm Calibration gas: Iso-butylene Error in measured reading: ± ppm Measured reading: ppm Measured reading Acceptable (Yes/No): PID Date of last factory Unit: Make: Model: calibration: Name of Calibrator: Date of calibration: Calibration gas: Iso-butylene Calibration Gas Concentration: 100.0 ppm Error in measured reading: ppm ± Measured reading: ppm Measured reading Acceptable (Yes/No): PID Date of last factory Unit: Make: Model: calibration: Name of Calibrator: Date of calibration: 100.0 ppm Calibration gas: Iso-butylene Calibration Gas Concentration: Error in measured reading: ± ppm Measured reading: ppm Measured reading Acceptable (Yes/No):

Appendix H: UCL Calculation Sheets

FILL SOIL DATA USED FOR CALCULATION OF 95% UCL

All data in mg/kg unless stated otherwise

				PAHs				
			Lead	Carcinogenic PAHs	B(a)P			
PQL - Envirolab Servi	ces		1	0.5	0.05			
Sample Reference	Sample Depth	Sample Description						
BH201	0.1-0.2	Fill: Silty Gravel	6	<0.5	<0.05			
BH201	0.9-1	Fill: Silty Sandy Clay	130	1.2	0.79			
BH203	0.1-0.2	Fill: Silty Sand	290	1.1	0.74			
BH203	0.3-0.4	Fill: Silty Sandy Clay	120	0.7	0.5			
BH207 / SDUP202	0-0.1	Fill: Silty Sand	17	0.82	0.55			
BH208	0-0.1	Fill: Silty Sand	36	0.7	0.5			
BH208	0.45-0.55	Fill: Silty Sandy Clay	84	4.9	3.3			
BH209	0-0.1	Fill: Silty Sand	55	<0.5	0.2			
BH209	0.6-0.8	Fill: Sandy Clay	23	<0.5	0.07			
BH210	0.05-0.1	Fill: Gravel	9	<0.5	<0.05			
BH210	0.55-0.6	Fill: Silty Sandy Clay	140	0.6	0.4			
BH211	0.2-0.3	Fill: Silty Sand	250	5	3.5			
BH212	0.1-0.15	Fill: Gravel	29	0.7	0.4			
BH213	0-0.1	Fill: Silty Sand	17	<0.5	0.07			
BH214	0.2-0.3	Fill: Silty Sand	92	<0.5	0.2			
BH214	0.3-0.4	Fill: Silty Sand	100	2.7	1.9			
BH215	0-0.1	Fill: Silty Sand	25	0.5	0.3			
BH215	0.2-0.3	Fill: Silty Sand	65	0.6	0.4			
BH216	0-0.1	Fill: Silty Sand	9	<0.5	<0.05			
BH216	1-1.3	Fill: Sandy Clay	4	<0.5	<0.05			
BH217 / SDUP201	0-0.1	Fill: Silty Sand	20	<0.5	0.2			
BH217	0.2-0.3	Fill: Silty Sand	170	0.7	0.4			
BH218	0-0.1	Fill: Silty Sand	160	0.9	0.62			
BH219	0-0.1	Fill: Silty Sand	13	<0.5	0.2			
BH219	0.5-0.6	Fill Silty Sand	23	<0.5	0.2			
			25	25				
Total Number of Sa	amples		25	25	25			
Maximum Value			290	5	3.5			

	A B C	D E	F	G H I J K ensored Full Data Sets	L
1					
2	User Selected Options	5			
3	Date/Time of Computation	ProUCL 5.125/02/2025 8	:56:58 AM		
4 5	From File	WorkSheet.xls			
6	Full Precision	OFF			
7	Confidence Coefficient	95%			
8	Number of Bootstrap Operations	2000			
9					
10					
11	Lead				
12					
13				Statistics	
14	Tota	I Number of Observations	25	Number of Distinct Observations	22
15			4	Number of Missing Observations	0
16		Minimum	4	Mean	75.48
17	l	Maximum SD	290 78.4	Median Std. Error of Mean	36 15.68
18		SD Coefficient of Variation	78.4 1.039	Std. Error of Mean Skewness	15.68
19			1.039	Skewness	1.301
20			Normal	GOF Test	
21	,	Shapiro Wilk Test Statistic	0.826	Shapiro Wilk GOF Test	
22		Shapiro Wilk Critical Value	0.820	Data Not Normal at 5% Significance Level	
23		Lilliefors Test Statistic	0.213	Lilliefors GOF Test	
24		5% Lilliefors Critical Value	0.173	Data Not Normal at 5% Significance Level	
25 26		Data Not	Normal at 5	% Significance Level	
20					
28		As	suming Nor	nal Distribution	
29	95% N	ormal UCL		95% UCLs (Adjusted for Skewness)	
30		95% Student's-t UCL	102.3	95% Adjusted-CLT UCL (Chen-1995)	105.8
31				95% Modified-t UCL (Johnson-1978)	103
32					
33			Gamma	GOF Test	
34		A-D Test Statistic	0.474	Anderson-Darling Gamma GOF Test	
35		5% A-D Critical Value	0.775	Detected data appear Gamma Distributed at 5% Significance	e Level
36		K-S Test Statistic	0.152	Kolmogorov-Smirnov Gamma GOF Test	
37		5% K-S Critical Value	0.18	Detected data appear Gamma Distributed at 5% Significance	Level
38		Detected data appear	r Gamma Di	stributed at 5% Significance Level	
39			Comme	Statistics	
40		k hat (MLE)	Gamma 0.959	Statistics k star (bias corrected MLE)	0.871
41		Theta hat (MLE)	78.69	Theta star (bias corrected MLE)	86.68
42		nu hat (MLE)	47.96	nu star (bias corrected MLE)	43.54
43	N/	ILE Mean (bias corrected)	75.48	MLE Sd (bias corrected)	43.54 80.89
44			. 0. 10	Approximate Chi Square Value (0.05)	29.41
45	Adiu	sted Level of Significance	0.0395	Adjusted Chi Square Value	28.62
46 47		3			
47 48		Ass	suming Garr	ma Distribution	
48 49	95% Approximate Gamm	na UCL (use when n>=50)	111.7		114.8
49 50		,		· · · · · ·	
50 51			Lognorma	GOF Test	
52	{	Shapiro Wilk Test Statistic	0.96	Shapiro Wilk Lognormal GOF Test	
53	5% 5	Shapiro Wilk Critical Value	0.918	Data appear Lognormal at 5% Significance Level	
54		Lilliefors Test Statistic	0.121	Lilliefors Lognormal GOF Test	
55	!	5% Lilliefors Critical Value	0.173	Data appear Lognormal at 5% Significance Level	
56		Data appear	Lognormal	at 5% Significance Level	

83	Mean of logged Data SD of logged Data hebyshev (MVUE) UCL	3.719
36 Minimum of Logged Data 1.386 59 Maximum of Logged Data 1.386 60 Maximum of Logged Data 5.67 61 Stribution 1000000000000000000000000000000000000	SD of logged Data	3.719
33 Maximum of Logged Data 5.67 60 Maximum of Logged Data 5.67 61 62 Assuming Lognormal Distribution 63 95% H-UCL 171.5 64 95% Chebyshev (MVUE) UCL 184.8 65 99% Chebyshev (MVUE) UCL 316.4	SD of logged Data	3.719
60 Complete Comple	hebyshev (MVUE) UCL	
62 Assuming Lognormal Distribution 63 95% H-UCL 171.5 90% Cl 64 95% Chebyshev (MVUE) UCL 184.8 97.5% Cl 65 99% Chebyshev (MVUE) UCL 316.4 916.4		1.214
62 95% H-UCL 171.5 90% Cl 63 95% Chebyshev (MVUE) UCL 184.8 97.5% Cl 64 99% Chebyshev (MVUE) UCL 184.8 97.5% Cl 65 99% Chebyshev (MVUE) UCL 316.4 97.5% Cl		
63 95% Chebyshev (MVUE) UCL 184.8 97.5% Chebyshev (MVUE) UCL 65 99% Chebyshev (MVUE) UCL 316.4		
64 99% Chebyshev (MVUE) UCL 316.4		152.8
	hebyshev (MVUE) UCL	229.2
67 Nonparametric Distribution Free UCL Statistics		
68 Data appear to follow a Discernible Distribution at 5% Significance Level		
69		
70 Nonparametric Distribution Free UCLs		
95% CLT UCL 101.3	95% Jackknife UCL	102.3
72 95% Standard Bootstrap UCL 100.2	95% Bootstrap-t UCL	108.6
73	ercentile Bootstrap UCL	102.2
74 95% BCA Bootstrap UCL 106.4		
75	byshev(Mean, Sd) UCL	143.8
76 97.5% Chebyshev(Mean, Sd) UCL 173.4 99% Cheb	byshev(Mean, Sd) UCL	231.5
77		
78 Suggested UCL to Use		
79 95% Adjusted Gamma UCL 114.8		
80		
81 Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most	st appropriate 95% UCL.	
82 Recommendations are based upon data size, data distribution, and skewness.		
83 These recommendations are based upon the results of the simulation studies summarized in Singh, M	. ,	
84 However, simulations results will not cover all Real World data sets; for additional insight the user may wa	ant to consult a statisticia	n.
85		
86		
86 87 CPAH		
87 CPAH		
87 CPAH 88 General Statistics		
87 CPAH 88 Serveral Statistics 90 Total Number of Observations 25	of Distinct Observations	10
87 CPAH 88 General Statistics 90 Total Number of Observations 25 91 Output Number of Observations	of Missing Observations	0
87 CPAH 88	of Missing Observations Mean	0 1.065
87 CPAH 88	of Missing Observations Mean Median	0 1.065 0.6
87 CPAH 88	of Missing Observations Mean Median Std. Error of Mean	0 1.065 0.6 0.251
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Output 91 Control Number of Observations 25 Number of Output 92 Minimum 0.5 0.5 0.5 93 Control Number of Observations 5 0.5 0.5	of Missing Observations Mean Median	0 1.065 0.6
87 CPAH 88 General Statistics 89 General Statistics 90 Total Number of Observations 25 91 C Number of Observations 92 Minimum 0.5 93 Maximum 5 94 Coefficient of Variation 1.178 95 General Statistics Statistics	of Missing Observations Mean Median Std. Error of Mean	0 1.065 0.6 0.251
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Number of Observations 91 C Number of Observations 25 Number of Observations 25 92 Minimum 0.5 Number of Observations 5 1 1 93 Maximum 5 1.254 1	of Missing Observations Mean Median Std. Error of Mean Skewness	0 1.065 0.6 0.251
87 CPAH 88 General Statistics 99 Total Number of Observations 25 Number of Output 91 Total Number of Observations 25 Number of Output 92 Minimum 0.5 Number of Output 1 93 Maximum 5 1 1 94 Coefficient of Variation 1.178 1 1 95 Coefficient of Variation 1.178 1 1 96 Vertex Statistic 0.497 Shapiro Wilk 1	of Missing Observations Mean Median Std. Error of Mean Skewness	0 1.065 0.6 0.251
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Number of Observations 91 C Number of Observations 25 Number of Observations 0 91 C Minimum 0.5 Number of Observations 0 1 92 Minimum 0.5 Maximum 5 1 1 1 93 Coefficient of Variation 1.178 1	of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test	0 1.065 0.6 0.251
87 CPAH 88 General Statistics 90 Total Number of Observations 25 91 25 Number of Number of Observations 92 Minimum 0.5 93 Maximum 5 94 SD 1.254 95 Coefficient of Variation 1.178 96 Versal Statistic 0.497 97 Shapiro Wilk Test Statistic 0.497 98 Shapiro Wilk Critical Value 0.918 Data Not Normal at 59 90 Lilliefors Test Statistic 0.352 Lilliefors G	of Missing Observations Mean Median Std. Error of Mean Skewness Skewness Skewness	0 1.065 0.6 0.251
87 CPAH 88 General Statistics 90 Total Number of Observations 25 91 Comparity Statistics Number of Observations 92 Minimum 0.5 93 Maximum 5 94 SD 1.254 95 Coefficient of Variation 1.178 96 97 Shapiro Wilk Test Statistic 0.497 98 Shapiro Wilk Critical Value 0.918 Data Not Normal at 59 99 Shapiro Wilk Critical Value 0.173 Data Not Normal at 59	of Missing Observations Mean Median Std. Error of Mean Skewness Skewness Skewness	0 1.065 0.6 0.251
87 CPAH 88 General Statistics 90 Total Number of Observations 25 91 25 Number of Observations 92 Minimum 0.5 93 Maximum 5 94 SD 1.254 95 Coefficient of Variation 1.178 96 Vormal GOF Test 98 Shapiro Wilk Test Statistic 0.497 99 5% Shapiro Wilk Critical Value 0.918 Data Not Normal at 5% 90 Lilliefors Test Statistic 0.352 Lilliefors G 90 S% Lilliefors Critical Value 0.173 Data Not Normal at 5%	of Missing Observations Mean Median Std. Error of Mean Skewness Skewness Skewness	0 1.065 0.6 0.251
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Number of Observations 91 Control Number of Observations 25 Number of Observations 92 Minimum 0.5 Number of Observations 1 93 Maximum 5 Statistics 1 94 Coefficient of Variation 1.178 Statistic 1 95 Coefficient of Variation 1.178 Statistic 1 96 Statistic 0.497 Shapiro Wilk Shapiro Wilk 98 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 99 5% Shapiro Wilk Critical Value 0.918 Data Not Normal at 5% 100 Lilliefors Test Statistic 0.352 Lilliefors G 101 S% Lilliefors Critical Value 0.173 Data Not Normal at 5% 102 Data Not Normal at 5% Significance Level 103	of Missing Observations Mean Median Std. Error of Mean Skewness Skewness Skewness	0 1.065 0.6 0.251
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Observations 91 Colored Number of Observations 25 Number of Observations 92 Minimum 0.5 Number of Observations 93 93 Maximum 5 Statistics 94 94 Maximum 5 Statistic 95 95 Coefficient of Variation 1.178 Stapiro Vilk 96 Vertain Statistic 0.497 Shapiro Wilk 97 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 98 Shapiro Wilk Critical Value 0.918 Data Not Normal at 59 99 5% Shapiro Wilk Critical Value 0.918 Data Not Normal at 59 100 Lilliefors Critical Value 0.173 Data Not Normal at 59 101 S% Lilliefors Critical Value 0.173 Data Not Normal at 59 102 Data Not Normal at 59 Data Not Normal at 59 103 Data Not Normal at 59 Significance Level	of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test % Significance Level GOF Test % Significance Level	0 1.065 0.6 0.251
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Number of Observations 91 Coefficient of Observations 25 Number of Observations 92 Minimum 0.5 Number of Observations 1 93 Maximum 5 1 1 94 Coefficient of Variation 1.178 1 1 95 Coefficient of Variation 1.178 1	of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test & Significance Level GOF Test & Significance Level	0 1.065 0.6 0.251 2.734
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Observations 91 Control Number of Observations 25 Number of Observations 92 Minimum 0.5 Number of Observations 93 Maximum 5 1 94 Maximum 5 1 95 Coefficient of Variation 1.178 1 96 Vertex Vertex 1 97 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 98 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 99 S% Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 91 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 93 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 94 Shapiro Wilk Critical Value 0.173 Data Not Normal at 59 95 Lilliefors Test Statistic 0.352 Lilliefors G 9102 Data Not Normal at 59 Signif	of Missing Observations Mean Median Std. Error of Mean Skewness Skewness Skewness Significance Level SoF Test Significance Level Significance Level Het for Skewness)	0 1.065 0.6 0.251 2.734
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Observations 91 Control Number of Observations 25 Number of Observations 92 Minimum 0.5 Number of Observations 93 Maximum 5 1 94 Maximum 5 1 95 Coefficient of Variation 1.178 1 96 Vertex Vertex 1 97 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 98 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 99 S% Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 91 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 93 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 94 Shapiro Wilk Critical Value 0.173 Data Not Normal at 59 95 Lilliefors Test Statistic 0.352 Lilliefors G 9102 Data Not Normal at 59 Signif	of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test & Significance Level GOF Test & Significance Level	0 1.065 0.6 0.251 2.734
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Observations 91 Coentral Number of Observations 25 Number of Observations 92 Minimum 0.5 Number of Observations 93 Maximum 5 1 94 Coefficient of Variation 1.178 1 95 Coefficient of Variation 1.178 1 96 Vermal GEF Test 1 1 98 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 99 ShShapiro Wilk Test Statistic 0.497 Shapiro Wilk 99 ShShapiro Wilk Test Statistic 0.497 Shapiro Wilk 99 ShShapiro Wilk Critical Value 0.918 Data Not Normal at 59 100 Lilliefors Test Statistic 0.352 Lilliefors G 101 Shopiro Milk Critical Value 0.173 Data Not Normal at 59 102 Data Not Normal MIL 1 95% UCLs (Adjust 95% UCLs (Adjust 95%) 103	of Missing Observations Mean Median Std. Error of Mean Skewness Skewness Skewness Significance Level SoF Test Significance Level Significance Level Het for Skewness)	0 1.065 0.6 0.251 2.734
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Observations 91 Control Number of Observations 25 Number of Observations 92 Maximum 0.5 Number of Observations 93 Maximum 5 Statistics 94 Coefficient of Variation 1.178 Statistics 95 Coefficient of Variation 1.178 Stapiro Wilk 96 Vertex Stapiro Vilk Test Statistic 0.497 Shapiro Wilk 99 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk Stapiro Gilliefors Gi	of Missing Observations Mean Median Std. Error of Mean Skewness Skewness Skewness Skewness Skewness Skewness Skewness Skewness Correst Significance Level Significance Level Correst Significance Level Correst Significance Level Correst Significance Level Correst Significance Level Correst Significance Level Correst Significance Level	0 1.065 0.6 0.251 2.734
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Observations 91 Control Number of Observations 25 Number of Observations 92 Minimum 0.5 Number of Observations 93 Maximum 5 Statistics 94 Coefficient of Variation 1.178 95 Coefficient of Variation 1.178 96 Vermal GF Test 97 Shapiro Wilk Test Statistic 0.497 98 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 99 Shapiro Wilk Critical Value 0.918 Data Not Normal at 59 100 Lilliefors Test Statistic 0.352 Lilliefors G 101 Shapiro Wilk Critical Value 0.173 Data Not Normal at 59 102 Data Not Normal At 59 Singlificance Level 101 103 Shapiro Student's-t UCL 1.494 95% Adjusted 104 95% Normal UCL 95% Modified 95% Modified 105<	of Missing Observations Mean Median Std. Error of Mean Skewness Skewness Skewness Skewness Skewness Skewness Skewness Cor Test Significance Level ted for Skewness I-CLT UCL (Chen-1995) I-CLT UCL (Johnson-1978)	0 1.065 0.6 0.251 2.734
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of N	of Missing Observations Mean Median Std. Error of Mean Skewness Skewness GOF Test Significance Level GOF Test Significance Level ted for Skewness) I-CLT UCL (Chen-1995) J-t UCL (Johnson-1978) CLT UCL (Johnson-1978)	0 1.065 0.6 0.251 2.734
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Observations 91 Control Number of Observations 25 Number of Observations 91 Maximum 0.5 Number of Observations 92 Minimum 0.5 Number of Observations 93 Maximum 5 1.254 94 Coefficient of Variation 1.178 95 Coefficient of Variation 1.178 96 Vertex Vertex 97 Vertex Vertex 98 Shapiro Wilk Test Statistic 0.497 Shapiro Wilk 99 Shapiro Wilk Critical Value 0.918 Data Not Normal at 59 100 Shapiro Statistic 0.352 Lilliefors Ga 101 Shapiro Milk Critical Value 0.173 Data Not Normal at 59 102 Data Not Mormal at 59 Significance Level 101 103 Shapiro Milk Critical Value 1.494 95% Adjusted 104 Sha	of Missing Observations Mean Median Std. Error of Mean Skewness Skewness Skewness Skewness Skewness Significance Level CF Test Significance Level CF Test Significance Level CLT UCL (Chen-1995) CLT UCL (Johnson-1978) Chamma GOF Test d at 5% Significance Level	0 1.065 0.6 0.251 2.734
87 CPAH 88 General Statistics 90 Total Number of Observations 25 Number of Number of Observations 91 25 Number of Observations 25 Number of Observations 91 25 Number of Observations 25 Number of Observations 92 Minimum 0.5 Number of Observations 1 93 Maximum 5 1 1 94 Coefficient of Variation 1.178 1 95 Coefficient of Variation 1.178 1 96	of Missing Observations Mean Median Std. Error of Mean Skewness Skewness Skewness Skewness Skewness Significance Level CF Test Significance Level CF Test Significance Level CLT UCL (Chen-1995) CLT UCL (Johnson-1978) Chamma GOF Test d at 5% Significance Level	0 1.065 0.6 0.251 2.734

	А	В		С		D		E	F	G	Н		l		J		K		L			
115									Gamma	Statistics												
116							k ha	at (MLE)						k sta	r (bias d	correct	ted ML	E)	1.503			
117						Th		at (MLE)		Theta star (bias corrected M									0.709			
118								at (MLE)			nu star (bias corrected								75.13			
119 120				M	LE Me	ean (b		rrected)			MLE Sd (bias corrected								0.869			
120											Approximate Chi Square Value (0							5)	56.17			
121				Adjus	sted Le	evel o	of Sign	ificance	0.0395								are Val	ue	55.05			
122				-										-		-						
124								As	suming Ga	nma Distribu	ition											
125	(5% Approx	(imate)	Gamma	a UCL	(use v	when	n>=50))	1.424		959	% Adju	sted Gar	mma	UCL (u	se wh	en n<5	0)	1.453			
126																						
127									-	al GOF Test												
128					-			Statistic					o Wilk L									
129				5% S				al Value			Data		gnormal		-							
130								Statistic					fors Log	-								
131				5	0% LIII	letors		al Value					gnormal	l at 5	% Signi	ficance	e Leve					
132							Da	ata NOT I	_ognormal a	at 5% Signific	ance Le	vei										
133									loanorm	al Statistics												
134					Minim	num of	f I oaa	ed Data	-						Mean	oflog	ged Da	ita	-0.264			
135								ed Data								_	ged Da		0.685			
136							99								50							
137 138								Ass	uming Logn	ormal Distrit	oution											
139							95%	H-UCL	1.307				909	% Ch	ebyshe	v (MV	UE) UG	CL	1.383			
140				95%	Cheby	yshev	(MVL	JE) UCL	1.574				97.59	% Ch	ebyshe	v (MV	UE) UG	CL	1.84			
141				99%	Cheby	yshev	(MVL	JE) UCL	2.363													
142																						
143							No	nparam	etric Distrib	ution Free U	CL Statis	stics										
144							Data	do not	follow a Dis	cernible Dist	ribution	(0.05)										
145																						
146								-		stribution Fre	e UCLs				050/				1 404			
146 147				05%	Stone			LT UCL	1.477	stribution Fre	e UCLs						nife U(1.494			
146 147 148						dard B	Bootstr	LT UCL ap UCL	1.477 1.483	stribution Fre	e UCLs		05%	2/ Po	95% B	ootstra	ap-t U(CL	2.081			
146 147 148 149				9	95% H	dard B Iall's B	Bootstr Bootstr	LT UCL ap UCL ap UCL	1.477 1.483 1.642	stribution Fre	e UCLs		95%	% Per		ootstra	ap-t U(CL				
146 147 148 149 150				9	95% H 95% E	dard B Iall's B 3CA B	Bootstr Bootstr Bootstr	LT UCL ap UCL ap UCL ap UCL	1.477 1.483 1.642 1.665	stribution Fre	e UCLs				95% B rcentile	Bootstra	ap-t U(trap U(CL	2.081 1.529			
146 147 148 149 150 151				9 9 90% Ch	95% H 95% E iebysh	dard B Iall's B BCA B hev(M	Bootstr Bootstr Bootstr Iean, S	LT UCL ap UCL ap UCL ap UCL Sd) UCL	1.477 1.483 1.642 1.665 1.817	stribution Fre	e UCLs		95% (Cheb	95% B rcentile yshev(I	Bootstra Bootst Vean,	ap-t U(trap U(Sd) U(DL DL	2.081 1.529 2.158			
146 147 148 149 150 151 152				9 9 90% Ch	95% H 95% E iebysh	dard B Iall's B BCA B hev(M	Bootstr Bootstr Bootstr Iean, S	LT UCL ap UCL ap UCL ap UCL	1.477 1.483 1.642 1.665 1.817		e UCLs		95% (Cheb	95% B rcentile	Bootstra Bootst Vean,	ap-t U(trap U(Sd) U(DL DL	2.081 1.529			
146 147 148 149 150 151 152 153				9 9 90% Ch	95% H 95% E iebysh	dard B Iall's B BCA B hev(M	Bootstr Bootstr Bootstr Iean, S	LT UCL ap UCL ap UCL ap UCL Sd) UCL	1.477 1.483 1.642 1.665 1.817 2.632	Stribution Fre			95% (Cheb	95% B rcentile yshev(I	Bootstra Bootst Vean,	ap-t U(trap U(Sd) U(DL DL	2.081 1.529 2.158			
146 147 148 149 150 151 152 153 154			97	9 90% Ch 7.5% Ch	95% H 95% E nebysh nebysh	dard B lall's B BCA B hev(M hev(M	Bootstr Bootstr Bootstr Iean, S	LT UCL ap UCL ap UCL ap UCL Sd) UCL	1.477 1.483 1.642 1.665 1.817 2.632				95% (Cheb	95% B rcentile yshev(I	Bootstra Bootst Vean,	ap-t U(trap U(Sd) U(DL DL	2.081 1.529 2.158			
146 147 148 149 150 151 152 153 154 155			97	9 90% Ch 7.5% Ch	95% H 95% E nebysh nebysh	dard B lall's B BCA B hev(M hev(M	Bootstr Bootstr Bootstr Iean, S	LT UCL ap UCL ap UCL ap UCL 6d) UCL 6d) UCL	1.477 1.483 1.642 1.665 1.817 2.632				95% (Cheb	95% B rcentile yshev(I	Bootstra Bootst Vean,	ap-t U(trap U(Sd) U(DL DL	2.081 1.529 2.158			
146 147 148 149 150 151 152 153 154		Note: Sugg	97	9 90% Ch 7.5% Ch 95% Ch	95% H 95% E nebysh nebysh ebysh	dard B lall's B BCA B hev(M hev(M hev(M	Bootstr Bootstr Bootstr Iean, S Iean, S Iean, S	LT UCL ap UCL ap UCL ap UCL ad) UCL ad) UCL ad) UCL ad) UCL	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p	I UCL to Use) Ip the us		95% (99% (Cheb Cheb	95% B rcentile yshev(I yshev(I	Bootstra Bootst Wean, Wean,	ap-t U(trap U(Sd) U(Sd) U(2.081 1.529 2.158			
146 147 148 149 150 151 152 153 154 155 156			97 9	9 90% Ch 7.5% Ch 95% Che s regard	95% H 95% E nebysh nebysh ebysh ling th Recom	dard B lall's B BCA B hev(M hev(M hev(M	Bootstr Bootstr Bootstr lean, S lean, S lean, S ection	LT UCL ap UCL ap UCL ap UCL Sd) UCL Sd) UCL Sd) UCL Sd) UCL Sd) UCL	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da	I UCL to Use	p lp the us distribut	ion, an	95% (99% (elect the	Cheb Cheb	95% B rcentile yshev(I yshev(I t approj	Bootstra Boots Mean, Mean,	ap-t U(trap U(Sd) U(Sd) U(95% U		2.081 1.529 2.158			
146 147 148 149 150 151 152 153 154 155 156 157		These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations	95% H 95% E nebysh nebysh ebysh ding th Recom	dard B lall's B BCA B hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M) hev	Bootstr Bootstr Bootstr lean, S lean, S lean, S lean, S lean, S lean, S lean, S lean, S lean, S	LT UCL ap UCL ap UCL ap UCL ad) UCL ad) UCL ad) UCL ad) UCL ad) UCL add add add add add add add add add add	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da	I UCL to Use	Ip the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn	Cheb Cheb e mos ess. h, Ma	95% B rcentile yshev(I yshev(I t approp	Bootstra Bootst Wean, Mean, Priate 9	ap-t U(trap U(Sd) U(Sd) U(95% U	CL CL CL CL CL.	2.081 1.529 2.158 3.561			
146 147 148 149 150 151 152 153 154 155 156 157 158		These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations	95% H 95% E nebysh nebysh ebysh ding th Recom	dard B lall's B BCA B hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M) hev	Bootstr Bootstr Bootstr lean, S lean, S lean, S lean, S lean, S lean, S lean, S lean, S lean, S	LT UCL ap UCL ap UCL ap UCL ad) UCL ad) UCL ad) UCL ad) UCL ad) UCL add add add add add add add add add add	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da	I UCL to Use	Ip the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn	Cheb Cheb e mos ess. h, Ma	95% B rcentile yshev(I yshev(I t approp	Bootstra Bootst Wean, Mean, Priate 9	ap-t U(trap U(Sd) U(Sd) U(95% U	CL CL CL CL CL.	2.081 1.529 2.158 3.561			
146 147 148 149 150 151 152 153 154 155 156 156 157 158 159		These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations	95% H 95% E nebysh nebysh ebysh ding th Recom	dard B lall's B BCA B hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M) hev	Bootstr Bootstr Bootstr lean, S lean, S lean, S lean, S lean, S lean, S lean, S lean, S lean, S	LT UCL ap UCL ap UCL ap UCL ad) UCL ad) UCL ad) UCL ad) UCL ad) UCL add add add add add add add add add add	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da	I UCL to Use	Ip the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn	Cheb Cheb e mos ess. h, Ma	95% B rcentile yshev(I yshev(I t approp	Bootstra Bootst Wean, Mean, Priate 9	ap-t U(trap U(Sd) U(Sd) U(95% U	CL CL CL CL CL.	2.081 1.529 2.158 3.561			
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162		These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations	95% H 95% E nebysh nebysh ebysh ding th Recom	dard B lall's B BCA B hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M) hev	Bootstr Bootstr Bootstr lean, S lean, S lean, S lean, S lean, S lean, S lean, S lean, S lean, S	LT UCL ap UCL ap UCL ap UCL ad) UCL ad) UCL ad) UCL ad) UCL ad) UCL add add add add add add add add add add	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da	I UCL to Use	Ip the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn	Cheb Cheb e mos ess. h, Ma	95% B rcentile yshev(I yshev(I t approp	Bootstra Bootst Wean, Mean, Priate 9	ap-t U(trap U(Sd) U(Sd) U(95% U	CL CL CL CL CL.	2.081 1.529 2.158 3.561			
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	H	These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations	95% H 95% E nebysh nebysh ebysh ding th Recom	dard B lall's B BCA B hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M) hev(M hev(M) hev(Bootstr Bootstr Bootstr lean, S lean, S lean, S lean, S lean, S lean, S lean, S lean, S lean, S	LT UCL ap UCL ap UCL ap UCL ad) UCL ad) UCL ad) UCL ad) UCL ad) UCL add add add add add add add add add add	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da	I UCL to Use	Ip the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn	Cheb Cheb e mos ess. h, Ma	95% B rcentile yshev(I yshev(I t approp	Bootstra Bootst Wean, Mean, Priate 9	ap-t U(trap U(Sd) U(Sd) U(95% U	CL CL CL CL CL.	2.081 1.529 2.158 3.561			
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164		These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations	95% H 95% E nebysh nebysh ebysh ding th Recom	dard B lall's B BCA B hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M) hev(M hev(M) hev(Bootstr Bootstr Bootstr lean, S lean, S lean, S lean, S lean, S lean, S lean, S lean, S lean, S	LT UCL ap UCL ap UCL ap UCL ad) UCL ad) UCL ad) UCL ad) UCL ad) UCL add add add add add add add add add add	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da ults of the sin	I UCL to Use	Ip the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn	Cheb Cheb e mos ess. h, Ma	95% B rcentile yshev(I yshev(I t approp	Bootstra Bootst Wean, Mean, Priate 9	ap-t U(trap U(Sd) U(Sd) U(95% U	CL CL CL CL CL.	2.081 1.529 2.158 3.561			
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165		These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations ns result	95% H 95% E nebysh nebysh ebysh s are t ts will	dard B lall's B BCA B hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M) hev(M hev(M) hev(M hev(M) hev(M) hev(M hev(M) hev(M	Bootstr Bootstr Bootstr Iean, S Iean,	LT UCL ap UCL ap UCL ap UCL ad) UCL ad	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da ults of the sii Vorld data so	I UCL to Use	Ip the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn d in Sing user ma	Cheb Cheb e mos ess. h, Ma	95% B rcentile yshev(I yshev(I t approp aichle, <i>a</i> nt to con	ootstra Bootst Wean, Mean, Mean, Mean, Mean, Mean,	ap-t U(trap U(Sd) U(Sd) U(95% U e (2000	CL.	2.081 1.529 2.158 3.561			
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166		These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations ns result	95% H 95% E nebysh nebysh ebysh s are t ts will	dard B lall's B BCA B hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M) hev(M hev(M) hev(M hev(M) hev(M) hev(M hev(M) hev(M	Bootstr Bootstr Bootstr Iean, S Iean,	LT UCL ap UCL ap UCL ap UCL ad) UCL ad) UCL ad) UCL ad) UCL ad) UCL add add add add add add add add add add	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da ults of the sii Vorld data so	I UCL to Use	Ip the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn d in Sing user ma	Cheb Cheb e mos ess. h, Ma y war	95% B rcentile yshev(I yshev(I t approp aichle, a nt to cou	ootstra Bootst Mean, Mea	ap-t U(trap U(Sd) U(Sd) U(95% U 95% U e (200 statist	CL CL CL CL CL.	2.081 1.529 2.158 3.561			
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 166 167		These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations ns result	95% H 95% E nebysh nebysh ebysh s are t ts will	dard B lall's B BCA B hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M) hev(M hev(M) hev(M hev(M) hev(M) hev(M hev(M) hev(M	Bootstr Bootstr Bootstr Bean, S lean,	LT UCL ap UCL ap UCL ap UCL ad) UCL ad	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da ults of the si Vorld data se Genera 25	I UCL to Use	Ip the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn d in Sing user ma	Cheb Cheb e mos ess. h, Ma y war	95% B rcentile yshev(I yshev(I t approp aichle, <i>a</i> nt to con	ootstra Bootst Mean, Mea	ap-t U(trap U(Sd) U(Sd) U(95% U 95% U e (200 statist	CL. CL. CL. 6). iciar ns ns	2.081 1.529 2.158 3.561			
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168		These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations ns result	95% H 95% E nebysh nebysh ebysh s are t ts will	dard B lall's B BCA B hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M) hev(M hev(M) hev(M hev(M) hev(M) hev(M hev(M) hev(M	Bootstr Bootstr Bootstr Hean, S lean,	LT UCL ap UCL ap UCL ap UCL Sd) Sd) UCL Sd) Sd) Sd) Sd) Sd) Sd) Sd) Sd) Sd) Sd)	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da ults of the sii Vorld data so Genera 25 0.05	I UCL to Use	Ip the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn d in Sing user ma	Cheb Cheb e mos ess. h, Ma y war	95% B rcentile yshev(I yshev(I t approp aichle, a nt to cou	ootstra Bootst Mean, Mea	ap-t U(trap U(Sd) U(Sd) U(95% U e (200 statistic statistic ervatio	CL CL CL CL CL. 6). iciar	2.081 1.529 2.158 3.561			
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169		These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations ns result	95% H 95% E nebysh nebysh ebysh s are t ts will	dard B lall's B BCA B hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M hev(M) hev(M hev(M) hev(M hev(M) hev(M) hev(M hev(M) hev(M	Bootstr Bootstr Bootstr Hean, S lean,	LT UCL ap UCL ap UCL ap UCL ad) uCL ad	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da ults of the sii Vorld data so Vorld data so Cenera 25 0.05	I UCL to Use	Ip the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn d in Sing user ma	Cheb Cheb e mos ess. h, Ma y war	95% B rcentile yshev(I yshev(I t approp aichle, a nt to co f Distinc	ootstra Bootstra Mean, M	ap-t U(trap U(Sd) U(Sd) U(Sd) U(95% U e (200) e (200) e statist	CL. CL. CL. CL. CL. CL. an an	2.081 1.529 2.158 3.561			
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 165 166 165 166 165 166 169 170		These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations ns result	95% H 95% E nebysh ebysh ebysh sare t ts will	dard B all's B BCA B hev(M hev	Bootstr Bootstr Bootstr Bean, S lean,	LT UCL ap UCL ap UCL ap UCL ad) UCL ad) UCL ad) UCL ad) UCL ad) UCL ad) UCL ad) UCL add add add add add add add add add add	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da ults of the sii Vorld data so Cenera 25 0.05 3.5	I UCL to Use	lp the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn d in Sing user ma	Cheb Cheb e mos ess. h, Ma y war	95% B rcentile yshev(I yshev(I t approp aichle, a nt to co f Distinc	ootstra Bootstra Mean, M	ap-t U(trap U(Sd) U(Sd) U(Sd) U(95% U 95% U e (200) e (200) e (200) e (200) e (200) e (200) e (200) e (200) e (200) f (20	CL. CL. CL. CL. CL. CL. CL. CL.	2.081 1.529 2.158 3.561			
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169		These reco	97 g estions	9 90% Ch 7.5% Ch 95% Ch s regard F ndations ns result	95% H 95% E nebysh ebysh ebysh sare t ts will	dard B all's B BCA B hev(M hev	Bootstr Bootstr Bootstr Bean, S lean,	LT UCL ap UCL ap UCL ap UCL Sd) Sd Sd) UCL Sd) Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd Sd S	1.477 1.483 1.642 1.665 1.817 2.632 Suggested 2.158 6 UCL are p sed upon da ults of the si Vorld data se Vorld data se 25 0.05 3.5 0.919	I UCL to Use	lp the us distribut ies sumr	ion, an narizeo	95% (99% (elect the d skewn d in Sing user ma	Cheb Cheb e mos ess. h, Ma y war	95% B rcentile yshev(I yshev(I t approp aichle, a nt to co f Distinc	ootstra Bootstra Mean, M	ap-t U(trap U(Sd) U(Sd) U(Sd) U(95% U e (200 statist ervatio ervatio ervatio Media f of Me	CL. CL. CL. CL. CL. CL. CL. CL.	2.081 1.529 2.158 3.561			


470	A		В		С		D	E		F Normal	G GOF Test		Н		I		J		K	Ι	L		
173 174					S	Shapir	o Wilk	Test Sta	atistic	0.601				Sh	apiro \	Wilk G	OF Tes	st					
174								Critical V		0.918			Data				Significa		Level				
175						Lil	liefors	Test Sta	atistic	0.309	Lilliefors GOF Test												
177					5	5% Lill	iefors (Critical	Value	0.173	Data Not Normal at 5% Significance Level												
178								Dat	ta Not	Normal at	Normal at 5% Significance Level												
179																							
180									Ass	suming Nor	mal Distrib	ution											
181				9	5% No								95			-	for Sk			1 0 2 7			
182						9	5% Stu	ident's-t	t UCL	0.94							LT UCL	•			1.027		
183														959	% Mod	lified-t	UCL (Jo	ohnso	on-1978	3)	0.956		
184										Gamma	GOF Test												
185							A-D	Test Sta	atistic	1.039			And	lerson	-Darlir	na Gar	nma G(est				
186 187						5%		Critical		0.781		Data				-	t 5% Si			evel			
187							K-S	Test Sta	atistic	0.158							amma (-					
189						5%	% K-S (Critical	Value	0.181	Detec	ted d	ata app	ear G	amma	Distrib	outed at	5% 5	Significa	ance	Level		
190						Dete	cted d	ata follo	ow App	pr. Gamma	Distributio	n at t	5% Sigi	nifican	ce Lev	/el							
191																							
192											Statistics												
193								k hat (0.806							(bias co				0.736		
194								eta hat (0.777					Thet		(bias co				0.851		
195								nu hat (40.28							i star (bi				36.78		
196					IVI	LE ME	ean (bia	as corre	ected)	0.626				A n n	rovina		E Sd (bi i Square			-	0.729 23.9		
197					۵dius	stad I	aval of	Signific	ance	0.0395				Арр			ted Chi				23.9		
198					Aujua	SIEU L	everor	Signine	ance	0.0395						Aujus		Oqua		e	23.13		
199									Ass	uming Gan	nma Distril	outior	ı										
200 201		95%	6 Approx	imate (Gamma	a UCL	_ (use \	when n>		0.963				Adjust	ed Gai	mma l	JCL (us	e whe	en n<5())	0.992		
201																				-			
203										Lognorma	I GOF Tes	t											
204					S	Shapir	o Wilk [·]	Test Sta	atistic	0.931			Sł	napiro	Wilk L	ognor	mal GO	FTe	st				
205					5% S	Shapiro	o Wilk (Critical V	Value	0.918		D			-		% Signi		ce Leve	эl			
206								Test Sta		0.132					-		al GOF						
207					5	5% Lill	iefors (0.173			• •		gnorm	al at 5	% Signi	ifican	ce Leve	el			
208								Data a	ppear	Lognormal	at 5% Sig	nifica	nce Le	vei									
209										Lognorma	al Statistics												
210						Minim	um of	Logged	Data	-2.996		•					Mean o	of load	ned Dat	a	-1.205		
211								Logged		1.253									ged Dat		1.235		
212 213																							
213									Assu	iming Logn	ormal Dist	ibutio	on										
215								95% H	-UCL	1.304					909	% Che	byshev	(MVI	UE) UC	L	1.147		
216					95%	Cheby	yshev ((MVUE)	UCL	1.39					97.5	% Che	byshev	(MVI	UE) UC	L	1.727		
217					99%	Cheby	yshev ((MVUE)	UCL	2.39													
218																							
219						_		-		tric Distribu													
220						Data	appea	ar to foll	iow a l	Discernible	Distributio	n at {	o% Sigi	nifican	ce Lev	/el							
221								N	lonna-	ametric Di-	tribution C	roo !											
222							QF	N 5% CLT		o.928			1019				95% 1	ackki	nife UC	:	0.94		
223					95%	Stan		otstrap		0.928							95% Bo				1.557		
224								otstrap		1.171					95%		entile B		-		0.944		
225 226								potstrap		1.038										+			
226 227				9				an, Sd)		1.177					95%	Cheby	shev(M	ean,	Sd) UC	L	1.427		
227				97.	5% Ch	nebysł	nev(Me	an, Sd)	UCL	1.774					99%	Cheby	shev(M	ean,	Sd) UC	L	2.455		
229											1												
230										Suggested	UCL to Us	se											
231					95	% Adj	usted (Gamma	UCL	0.992													
						•			I														

	А	В	С	D	E	F	G	Н		J	K	L
232												
233	When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test											
234		When app	licable, it is s	suggested to	use a UCL b	ased upon a	distribution (e.g., gamma) passing bo	th GOF tests	in ProUCL	
235												
236	Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.											
237												
238	These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).											
239	Н	owever, simu	lations resul	ts will not cov	er all Real W	/orld data se	ts; for additio	onal insight th	e user may v	want to consi	ult a statistici	an.
240												

Appendix I: SAQP for Supplementary Investigation

ONSAOP **REPORT TO** NSW DEPARTMENT OF EDUCATION

ON

FOR

ÅΤ

YSIS AND QUALITY PLAN FOR SAMPLING, ANAL SUPPLEMENTARY ENVIRONMENTAL INVESTIGATION

PROPOSED ALTERATIONS AND ADDITIONS

SUPPLEM **KOGARAH PUBLIC SCHOOL, 24B GLADSTONE** STREET, KOGARAH, NSW

Date: 19 March 2025 Ref: E32976BT2rpt6-SAQP **JK**Environments www.jkenvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Katrina / aylor Senior Associate | Environmental Scientist

Report reviewed by:

For and on behalf of

Brendan Page Principal | Environmental Scientist CEnvP SC

JKE PO BOX 976 NORTH RYDE BC NSW 1670

DOCUMENT REVISION RECORD

Report Reference	Report Status	Report Date
E32976BT2rpt6-SAQP	Final Report	19 March 2025
	N.Y.	·

© Document copyright of JK Environments (JKE

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the Client's brief to JKE; and
- c) The terms of contract between JKE and the Client, including terms limiting the liability of JKE.

If the Client or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

Table of Contents

1	INTRO	DUCTION	1
	1.1	PROPOSED DEVELOPMENT DETAILS	1
	1.2	AIMS AND OBJECTIVES	1
	1.3	Scope of Work	2
2	SITE IN	FORMATION	3
	2.1	BACKGROUND	3
	2.2	SITE IDENTIFICATION	5
	2.3	SITE LOCATION AND REGIONAL SETTING	6
	2.4	Тородгарну	6
	2.5	SITE INSPECTION	6
	2.6	SURROUNDING LAND USE	7
	2.7	UNDERGROUND SERVICES	7
	2.8	SUMMARY OF REGIONAL GEOLOGY AND HYDROGEOLOGY	7
	2.9	RECEIVING WATER BODIES	9
3	CONCE	PTUAL SITE MODEL	10
	3.1	CONTAMINATION SOURCES/AEC AND COPC	10
	3.2	MECHANISM FOR CONTAMINATION, AFFECTED MEDIA, RECEPTORS AND EXPOSURE PATHWAYS	11
4	SAMPL	ING, ANALYSIS AND QUALITY PLAN	12
	4.1	DATA QUALITY OBJECTIVES (DQO)	12
	4.2	SOIL SAMPLING PLAN AND METHODOLOGY	15
	4.3	GROUNDWATER SAMPLING PLAN AND METHODOLOGY	17
	4.4	LABORATORY ANALYSIS AND PROPOSED ANALYTICAL SCHEDULE	18
5	SITE AS	SSESSMENT CRITERIA (SAC)	20
	5.1	Soil	20
	5.2	GROUNDWATER	22
6		TING REQUIREMENTS	23
7	LIMITA	TIONS	24
	C	TIONS	

List of Tables

Table 2-1: Previous information summary Table 2-2: Site Identification Table 2-3: Summary of Field Screening SUPPLEMENTARY MULSINGATION SAO Table 3-1: Contamination Sources/AEC and Contaminants of Potential Concern Table 3-2: CSM Table 4-1: Proposed Soil Sampling Plan and Methodology Table 4-2: Proposed Groundwater Sampling Plan and Methodology **Table 4-3: Laboratory Details** Table 5-1: Details for Asbestos SAC Table 5-2: Waste Categories

Appendix A: Report Figures Appendix C: Borehole Logs for Existing Monitoring Wells Appendix C: Activity Specific AMP Appendix B: Report Explanatory Notes Appendix D: Guidelines and Reference Documents

3

5

8

10

11

15

17

18 20

21

Abbreviations

Asbestos Fines/Fibrous Asbestos	AF/FA
Ambient Background Concentrations	ABC
Added Contaminant Limits	ACL
Asbestos Containing Material	ACM
Australian Drinking Water Guidelines	ADWG
Area of Environmental Concern	AEC
Australian Height Datum	AHD
Acid Sulfate Soil	ASS
Before You Dig Australia	BYDA
Below Ground Level	BGL
Benzo(a)pyrene Toxicity Equivalent Factor	BaP TEQ
Benzene, Toluene, Ethylbenzene, Xylene	D BTEX
Cation Exchange Capacity	CEC
Contaminated Land Management	CLM
Covered Outdoor Learning Area	COLA
Contaminant(s) of Potential Concern	CoPC
Chain of Custody	COC
Conceptual Site Model	CSM
Data Quality Indicator	DQI
Data Quality Objective	DQO
Detailed Site Investigation	DSI
Ecological Investigation Level	EIL
Ecological Screening Level	ESL
Environment Protection Authority	EPA
Fibre Cement Fragment(s)	FCF
Health Investigation Level	HIL
Health Screening Level	HSL
International Organisation of Standardisation	ISO
JK Environments	JKE
Lab Control Spike	LCS
Light Non-Aqueous Phase Liquid	LNAPL
Map Grid of Australia	MGA
National Association of Testing Authorities	NATA
National Environmental Protection Measure	NEPM
Organochlorine Pesticides	OCP
Organophosphate Pesticides	OPP
Polycyclic Aromatic Hydrocarbons	PAH
Polychlorinated Biphenyls	PCB
Photo-ionisation Detector	PID
Protection of the Environment Operations	POEO
Practical Quantitation Limit	PQL
Quality Assurance Quality Control	QA QC
Relative Percentage Difference	RPD
Site Assessment Criteria	SAC
Sampling, Analysis and Quality Plan	SAQP
State Environmental Planning Policy	SEPP
Source, Pathway, Receptor	SPR
Standard Penetration Test	SPT
Standard Venetration Test	SWL
Trip Blank	ТВ
Toxicity Characteristic Leaching Procedure	TCLP
Total Recoverable Hydrocarbons	TRH

Trip Spike Upper Confidence Limit Volatile Organic Compounds

Units

Litres Metres BGL SUPPLEMENTARY INVESTIGATION SA Metres Millivolts Millilitres Milliequivalents micro Siemens per Centimetre Micrograms per Litre Milligrams per Kilogram Parts Per Million Percentage Percentage weight for weight

VOC L mBGL m WV

ml or mL

μS/cm

mg/kg

%w/w

meg

μg/L

ppm %

TS

UCL

JKEnvironments

1 INTRODUCTION

NSW Department of Education ('the client') commissioned JK Environments (JKE) to prepare a Sampling, Analysis and Quality Plan (SAQP) for the Supplementary Environmental Investigation to be undertaken by JKE for the proposed alterations and additions at Kogarah Public School, 24B Gladstone Street, Kogarah, NSW. The site location is shown on Figure 1 and the proposed investigation will be confined to 'the site' boundaries (defined by the proposed development area) as shown on Figure 2 attached in the appendices.

JKE has previously undertaken a Phase 1 Desktop Assessment (desktop), a Phase 2 Preliminary Intrusive Investigation (intrusive investigation), and a Detailed Site Investigation (DSI) at the site. WSP has also previously prepared a Preliminary Desktop Site Investigation at the site. A summary of relevant information from these reports is included in Section 2.

1.1 Proposed Development Details

It is understood that the proposed Kogarah Public School upgrade works include the following:

- Demolition of existing playground facilities and Covered Outdoor Learning Area (COLA) in addition to footings and services associated with former demountable buildings;
- Tree removal;
- Construction of a new three storey Classroom building and attached amenities facilities;
- Construction of a single storey Hall with attached COLA;
- New pedestrian pathway connections providing access throughout the site;
- Service upgrades; and
- Site landscaping works.

A basement level is not proposed.

1.2 Aims and Objectives

The primary aim of the investigation is to provide additional data in relation to the occurrence and concentrations of asbestos in soil, provide an increased soil sampling density for asbestos, and to provide additional groundwater data in order to assess site risks in relation to contamination and establish whether remediation is required. A secondary aim of the investigation is to provide additional waste classification data for off-site disposal of soil waste which may be generated during the proposed development works.

The investigation objectives are to:

- Assess the soil and groundwater contamination conditions via implementation of a sampling and analysis program;
- Document an iteration and review of the conceptual site model (CSM);
- Assess the potential risks posed by contamination to the receptors identified in the CSM (Tier 1 assessment);
- Update the existing waste classification for off-site disposal of soil;
- Assess whether the site is suitable or can be made suitable for the proposed development (from a contamination viewpoint); and
- Assess whether remediation is required.

1.3 Scope of Work

The SAQP was prepared generally in accordance with a JK proposal (Ref: EP71307PT) of 3 March 2025 and written acceptance from the client.

The scope of work included review of the existing project information and preparation of an SAQP with regards to National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)¹, and other guidelines made under or with regards to the Contaminated Land Management Act (1997)².

. Pagara Desar Des A list of reference documents/guidelines is included in the appendices.

2

¹ National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013). (referred to as NEPM 2013)

² Contaminated Land Management Act 1997 (NSW) (referred to as CLM Act 1997)

2 SITE INFORMATION

2.1 Background

JKE undertook previous investigations at the site and wider school property in 2020 and early 2025, and WSP undertook a previous investigation in 2023. The western portion of the wider school property does not form part of the site for the purpose of the DSI (see Figures 1 and 2 in Appendix A). A summary of relevant information from the previous investigations is outlined in the table below:

Table 2-1: Previous infor	mation summary
Report	Summary of relevant information
Phase 1 Desktop Assessment, 2020 ³	The desktop included review of site information, including: background and historical information; a walkover site inspection; and preparation of a report presenting the results of the assessment, including a CSM.
	Site history information indicated that residential style structures had been present on the site, and one of the lots within the site had been utilised as a bus depot. The site and wider school property was progressively developed into the primary school site from 1956. During this time, demolition of the original site structures occurred, along with potential filling of the site. The age of the former and existing buildings indicated the potential for hazardous building materials to be present. During the JKE site inspection, a fibre cement fragment (FCF) of suspected asbestos containing material (ACM) was identified on the site, and fill material (i.e.
	 imported/disturbed soils) was also observed at the site surface in several areas. Based on the scope of work undertaken for desktop, the CSM identified the following potential contamination sources/areas of environmental concern (AEC): Fill material - It was considered possible that minor historical filling had occurred to achieve the existing levels. The fill may have been imported from various sources and could be contaminated. It was also considered possible that fill was generated from the native (on-site soils) and was mixed with debris during various phases of redevelopment; Historical use as a bus depot - Historical title records indicated that the site was owned by a company providing bus service operations and aerial photographs confirmed buses were being stored on this section of the site. Fuels, oils and
SUPP	 solvents (e.g. toluene/mineral spirit/thinners) may have been used during this site use; Use of pesticides - Pesticides may have been used beneath the buildings and/or around the site; Hazardous building materials (i.e. ACM) - Hazardous building materials may be present as a result of former building and demolition activities. These materials may also be present in the existing buildings/ structures on site. Hazardous building materials can also occur in fill due to historical demolition activities; and Up-gradient off-site historical dry cleaners and motor garage/service stations – historical business directories indicated that several of these businesses were located upgradient of the site and may pose a risk to the site via migration of contaminated groundwater.
	The desktop recommended undertaking a preliminary intrusive investigation to make an initial assessment of contamination-related risks and to inform the design of a detailed (Stage 2) site investigation (DSI).

³ JKE, (2020a). Report to School Infrastructure NSW on Phase 1 Desktop Assessment for Proposed School Redevelopment (SINSW00330/19) at Kogarah Public School, 24B Gladstone Street, Kogarah, NSW. (Ref: E32976PTrpt-KPS, dated 28 February 2020) (referred to as desktop)

Poport	Summary of relevant information
Report	
Phase 2 Preliminary Intrusive	The intrusive investigation included a review of existing project information, a site inspection, and soil sampling from 10 boreholes, of which four were located on the current
Investigation, 2020 ⁴	site, including BH107 to BH110 inclusive (refer to Figure 2). Fill material was encountered to depths of between approximately 0.2m below ground level (BGL) and 1.7m BGL,
	underlain by natural residual sandy soils. The fill contained inclusions of igneous and
	ironstone gravel, glass fragments, sand and root fibres. A selection of soil samples was
	analysed for the contaminants of potential concern (CoPC) identified in the CSM. A
	surficial FCF was identified in the south of the site as shown on Figure 2. The surficial FCF
	was removed from the site (as sample FCF1) by JKE during the desktop was also analysed
	and was found to contain asbestos.
	Based on the data from the intrusive investigation, JKE was of the opinion that the potential risk of widespread subsurface contamination in the intrusive investigation area was low as the soil samples analysed did not identify contamination that was assessed to pose an unacceptable risk. FCF1 was non-friable ACM. The source of the asbestos appeared
	to be a fibre cement board at the base of the neighbouring fence and was considered
	unlikely to be associated with on-site soils in that vicinity. The ACM was removed and no further fragments were identified in the area.
	The intrusive investigation report recommended that the investigation data obtained should be supplemented via a detailed investigation in order to fully characterise the
	contamination conditions at the site and establish whether remediation is required.
Site Contamination	The PSI comprised a desktop study to review general site details, site environmental setting
Services –	and history, regulatory databases and client provided reports and information.
Preliminary Desktop	The site history review was limited to historical aerial photographs and publicly available
Site Investigation, 2023 ⁵	information on online databases.
	Based on the scope of work undertaken for desktop, the CSM identified the following potential contamination sources/ AEC:
	 Uncontrolled fill materials potentially used historically to raise or level portions of the site;
	 Historical or recent waste dumping;
	Potential ACM or hazardous building materials associated with imported materials
	or demolished structures; and
	 Pesticides used historically and recently to maintain the site.
	The report concluded that the site presented a low to moderate risk of inground
	contamination due to the potential for uncontrolled fill and poor demolition practices
0	associated with historic development and demolition of residential buildings on the site.
, PX	It is noted that the investigation did not include a site inspection.
Detailed Site	The DSI included a review of existing site information, soil sampling from 12 boreholes/test
Investigation, 2025 ⁶	pits and groundwater sampling from three monitoring wells (see Figure 2 in Appendix A).
	The boreholes/test pits encountered fill materials to depths of approximately 0.2mBGL to
	1.4mBGL in all locations and was generally underlain by sandstone bedrock. No FCFACM
	was encountered in the fill material during the fieldwork.

⁴ JKE, (2020b). Report to School Infrastructure NSW on Phase 2 Preliminary Intrusive Investigation for Proposed School Redevelopment (SINSW00330/19) at Kogarah Public School, 24B Gladstone Street, Kogarah, NSW. (Ref: E32976PTrpt2-KPS, dated 8 May 2020) (referred to as intrusive investigation)

⁵ WSP, (2023). Report to School Infrastructure NSW on Site Contamination Services – Preliminary Desktop Site Investigation, Kogarah Public School. (Project Ref: PS206292, report dated 7 December 2023) (referred to as WSP PSI)

Dement	Comments of values at information
Report	Summary of relevant information
	A selection of soil and groundwater samples were analysed for the CoPC identified in the
	CSM. In fill soil, carcinogenic polycyclic aromatic hydrocarbons (PAHs) were reported at
	concentrations above the health-based SAC. Asbestos (as AF/FA) was also detected in fill
	soils at one location, although the concentration of asbestos was below the health-based
	SAC.
	In groundwater, copper, zinc and PAHs (phenanthrene, anthracene, fluoranthene, and
	benzo(a)pyrene) were reported above the freshwater ecological SAC, and the
	benzo(a)pyrene concentration also exceeded the drinking water and recreational SAC.
	Despite the SAC exceedances, the Tier 1 risk assessment did not identify a trigger for
	remediation as risks were assessed to be low. However, further investigation of the site
	was noted to be required due to the occurrence of asbestos in fill and to better understand
	the potential impacts from PAHs in the groundwater.
	The DSI concluded that further investigation of the site is required to provide a conclusive
	outcome regarding whether the land is suitable in its current state, or whether
	remediation is required (relating to Clause 4.6 of the State Environmental Planning Policy
	[Resilience and Hazards] 2021 ⁷ [formerly known as SEPP55]). The following as
	recommended:
	1. Preparation of an interim asbestos management plan (AMP) to manage potential
	risks from asbestos in/on soil until the activity occurs;
	 Preparation and implementation of a Remediation Action Plan (RAP). The RAP is to
	include requirements for a pre-remediation investigation to adequately address the
	data gaps identified and outline a contingency for remediation if the investigation
	confirms remediation is necessary;
	3. Preparation and implementation of a construction-phase AMP; and
	4. Preparation of a validation assessment report, as required, for the remediation works
	undertaken at the site.
	Based on the results of the preliminary waste classification assessment, and at the time of
	reporting, the fill material at the site is assigned a preliminary classification of General Solid
	Waste (non-putrescible) containing Special Waste (asbestos). At the time of reporting, it
	was also considered possible that some of the natural soils and bedrock at the site could
	classifiable as virgin excavated natural material (VENM) for off-site disposal or re-use
	purposes. Confirmatory waste classification assessment is required.

2.2 Site Identification

Table 2-2: Site Identification	
Site Address:	24B Gladstone Street, Kogarah, NSW
Lot & Deposited Plan:	Lot 1 in DP179779, Lot A in DP391026, and part of Lot 1 in DP667959.
Current Land Use:	Primary School (Kindergarten to year 6)
Proposed Land Use:	Continued use as a primary school
Local Government Area:	Georges River Council

⁷ State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW) (referred to as SEPP Resilience and Hazards 2021)

Current Zoning:	SP2: Infrastructure
Site Area (m ²) (approx.):	4,375
Geographical Location (decimal degrees) (approx.):	Latitude: -33.9618430 Longitude: 151.1370970
Site Location Plans:	Appendix A

2.3 Site Location and Regional Setting

The site is located in the eastern portion of the existing Kogarah Public School property, which itself is in a mixed-use area of Kogarah and is bound by the Princes Highway to the east and Gladstone Street to the west. The site is located approximately 535m to the south-west of Muddy Creek and 1.7km to the west of Botany Bay.

2.4 Topography

The site is situated in gently undulating regional topography, with the site itself gently sloping towards the east at approximately 1° to 2°. Parts of the site appear to have been levelled to account for the slope and accommodate the existing development.

2.5 Site Inspection

The most recent walkover inspection of the site was undertaken by JKE on 15 January 2025 as part of the DSI. A summary of the inspection findings is outlined below:

- At the time of the inspection, the site comprised a COLA, over asphaltic concrete paved playground in the west of the site. The east of the site comprised soft-fall and artificial grass covered playground areas with garden and landscaped areas around the boundaries of the site. A small toilet block and goods store was also positioned along the southern boundary, and construction fencing was positioned along the central north of the site in an east-west alignment, due to recent demolition activities (removal of demountable classrooms) in this section of the site;
- Where the demolition/removal had taken place in the north of the site, exposed soils and debris from demolition/removal activities were observed at the site surface;
- During the inspection, an unsealed bag of FCF/suspected ACM was identified in the central north of the site. The bag was assumed to be associated with an emu-pick following demolition removal works. JKE sealed the bag and informed the client of this find at the time of the fieldwork;
- Fill was observed at the ground surface in areas of exposed soils across the site. Imported material/fill was considered likely to be present in garden beds and as a result of general (minor) levelling works across the site;
- Aside from fill, there were no other visible or olfactory indicators of contamination observed during the inspection; and
- Medium to large trees were observed around the site and a number of grass-covered sections of the site were also observed. Grass coverage was generally good in the unpaved areas, with the exception

of some areas beneath large trees and isolated areas of the playground (generally around the interface with pavements).

2.6 Surrounding Land Use

During the DSI site inspection, JKE observed the following land uses in the immediate surrounds:

- North high-density high-rise residential apartment buildings, a construction site and Regent Street;
- South St Paul's Anglican Church (heritage), children's centre (church run);
- East Princes Highway and low-density residential houses; and
- West Kogarah Public School (main buildings).

JKE did not observe any land uses in the immediate surrounds that were identified as potential contamination sources for the site.

2.7 Underground Services

The 'Before You Dig Australia' (BYDA) plans were reviewed in preparation of this SAQP in order to establish whether any major underground services exist at the site or in the immediate vicinity that could act as a preferential pathway for contamination migration. Major services were not identified that would be expected to act as preferential pathways for contamination migration.

2.8 Summary of Regional Geology and Hydrogeology

2.8.1 Regional Geology

Regional geological information reviewed for the previous investigations indicated that the site is underlain by underlain by Triassic aged deposits of medium to coarse-grained quartz sandstone, and very minor shale and laminate lenses (Hawksbury Sandstone).

A summary of the subsurface conditions encountered during the DSI is present in the table below:

Table 7.1: Summary of Subsurface Conditions

Profile	Description
Pavement	Asphaltic concrete pavement was encountered at the surface in BH203, BH210, BH211, BH212, and BH214, between approximately 50mm to 100mm in thickness.
Fill S	Fill was encountered at the surface or immediately beneath the pavement in all locations and extended to depths of approximately 0.2mBGL to 1.4mBGL. BH209 to BH217 and BH219 were terminated in the fill soil as a maximum depth of 1.4mBGL.
	The fill typically comprised of silty sand, silty sandy clay, gravel, gravelly sand, sandy clay, and silty sandy gravel with inclusions of igneous, ironstone, and sandstone gravel, plastic, glass, tile, metal and brick fragments, slag, ash, wood and root fibres.
	Neither staining nor odours were encountered in the fill material during fieldwork. No FCF or ACM was encountered in the fill material during the fieldwork.

Profile	Description
Bedrock	Sandstone bedrock was encountered beneath the fill material in BH201, BH203, BH207, BH208 and BH218. Neither staining nor odours were recorded in the bedrock during fieldwork.
Groundwater	Groundwater seepage was encountered in boreholes BH201, BH209, BH212, BH214, BH216 and BH219 at depths of approximately 0.4mBGL to 0.8mBGL. All other boreholes remained dry during and on completion of drilling.

2.8.2 Acid Sulfate Soil (ASS) Risk and Planning

The site is not located in an acid sulfate soil (ASS) risk area according to the risk maps prepared by the Department of Land and Water Conservation. (1997)⁸.

The site is not mapped as being within an ASS risk area in the Georges River Local Environmental Plan 2021.

2.8.3 Hydrogeology

Hydrogeological information reviewed for the previous investigations indicated that the regional aquifer onsite and in the areas immediately surrounding the site includes porous, extensive aquifers of low to moderate productivity. There was a total of 521 registered bores within the report buffer of 2,000m. In summary:

- The nearest registered bore was located approximately 400m from the site. This was utilised for domestic purposes. The nearest downgradient bore registered for domestic uses was located over 1,500m to the north of the site
- The majority of the bores were registered for domestic purposes;
- The drillers log information from the closest (within 500m) registered bores typically identified fill and/or sand and clay soil to depths of 3.65m-6.50m. Standing water levels (SWLs) in the bores ranged from 1.5m below ground level (BGL) to 3.0mBGL; and
- Groundwater is likely to be encountered at depths ranging from 3m to 5m below existing surface levels based on previous JKG investigations of nearby properties.

A summary of the groundwater field screening conditions encountered during the DSI is presented in the following table:

Aspect	Details
Groundwater Depth & Flow	The relative heights of the ground surface at each monitoring well location were recorded using a GPS and the relative levels (RLs) of groundwater in each well were calculated based of the SWLs during the DSI.
	A contour plot was prepared for the groundwater flow direction using Surfer v8.08 (Surface Mapping Program). The contour plot indicated that groundwater generally flow towards the north, which is generally consistent with expectations based on the topography, and down-gradient water bodies.

⁸ Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map (Series 9130N3, Ed 2)

Aspect	Details
Groundwater Field Parameters	 Field measurements recorded during the DSI sampling were as follows: pH ranged from 4.90 to 5.22; EC ranged from 941µS/cm to 1,385µS/cm; Eh ranged from 64.9mV to 180.7mV; and DO ranged from 1.0mg/L to 5.7mg/L. The PID readings in the monitoring well headspace recorded during sampling ranged from 0ppm in MW203 and MW207, and 1ppm in MW208.
LNAPLs petroleum hydrocarbons	Phase separated product (i.e. LNAPL) was not detected using the interphase probe during groundwater sampling.

2.9 **Receiving Water Bodies**

in the second se Surface water bodies were not identified in the immediate vicinity of the site. The closest surface water body is Muddy Creek, a tributary of the Cooks River located approximately 535m to the north-east of the site. This is down-gradient from the site, and is considered to be a potential receptor.

3 CONCEPTUAL SITE MODEL

NEPM (2013) defines a CSM as a representation of site related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM for the site is presented in the following sub-sections and is based on the site information (including the site inspection information) and background/site history site history information. Reference should also be made to the figures attached in the appendices.

3.1 Contamination Sources/AEC and CoPC

The contamination sources/areas of environmental concern (AEC) and contaminants of potential concern (CoPC) are presented in the following table:

Table 3-1: Contamination Sources/AEC and Contaminants of Potential Concern

Source / AEC	CoPC
Fill material – It is possible that minor historical filling has	Heavy metals (arsenic, cadmium, chromium,
occurred to achieve the existing levels. The fill may have	copper, lead, mercury, nickel and zinc), petroleum
been imported from various sources and could be	hydrocarbons (referred to as total recoverable
contaminated. It is also possible that fill was generated from	hydrocarbons – TRHs), benzene, toluene,
the native (on-site soils) and was mixed with debris during	ethylbenzene and xylene (BTEX), polycyclic
various phases of redevelopment.	aromatic hydrocarbons (PAHs), organochlorine
+.	pesticides (OCPs), organophosphate pesticides
Fill material was encountered to depths of between 0.1m to	(OPPs), polychlorinated biphenyls (PCBs) and
1.4mBGL across the site during the DSI.	asbestos.
	\mathbf{V}
Asbestos was identified as a surficial FCF/ACM during	
previous investigations, in a bag of FCF/ACM during the site	
inspection for the DSI and in fill/soil during the DSI, and it is	
possible the asbestos is associated with this AEC and/or with	
hazardous building materials from poor demolition practices.	
Exceedances of carcinogenic PAHs in fill soil and PAHs in	
groundwater were reported at the site during the DSI.	
Use of pesticides – Pesticides may have been used beneath	Heavy metals and OCPs.
the buildings and/or around the site.	
Risks associated with this AEC are considered to be low.	
However, sampling has not been completed adjacent to or	
beneath the existing buildings yet to be demolished (toilet	
block on southern side of site)	
Hazardous Building Material – Hazardous building materials	Asbestos and lead.
may be present as a result of former building and demolition	
activities. These materials may also be present in the existing	
buildings/ structures on site.	
Asbestos was identified as a surficial FCF/ACM during	
previous investigations, in a bag of FCF/ACM during the site	
inspection for the DSI and in fill/soil during the DSI, and it is	
possible the asbestos is associated with this AEC and/or with	
imported fill.	

3.2 Mechanism for Contamination, Affected Media, Receptors and Exposure Pathways

The mechanisms for contamination, affected media, receptors and exposure pathways relevant to the potential contamination sources/AEC are outlined in the following CSM table:

Table	3-2:	CSM

Table 3-2: CSIVI	
Potential mechanism for	The potential mechanisms for contamination are most likely to include 'top-down'
contamination	impacts and spills. There is a potential for sub-surface releases to have occurred if
	deep fill (or other buried industrial infrastructure) is present, although this is
	considered to be the least likely mechanism for contamination.
	Call and success durates have been identified as a startic line (for task and is
Affected media	Soil and groundwater have been identified as potentially affected media.
Receptor identification	Human receptors include site occupants/users (including adults and children),
	construction workers and intrusive maintenance workers. Off-site human receptors
	include adjacent land users, and groundwater users.
	4
	Ecological receptors include terrestrial organisms and plants within unpaved areas
	(including the proposed landscaped areas), and ecology in down-gradient water
	bodies.
	boules.
Potential exposure	Potential exposure pathways relevant to the human receptors include ingestion,
pathways	dermal absorption and inhalation of dust (all contaminants) and vapours (volatile TRH,
	naphthalene and BTEX). The potential for exposure would typically be associated with
	the construction and excavation works, and future use of the site. Potential exposure
	pathways for ecological receptors include direct/primary contact and ingestion.
	Exposure during future site use could occur via direct contact with soil in unpaved
	areas such as gardens, inhalation of airborne asbestos fibres during soil disturbance,
	or inhalation of vapours within enclosed spaces such as buildings and basements.
	Exposure to groundwater may occur in Muddy Creek and/or the Cooks River through
	direct migration.
Detential ann a anna	The following hour identified as potential supervise machinisms for site
Potential exposure	The following have been identified as potential exposure mechanisms for site
mechanisms	contamination:
	Vapour intrusion into the proposed building (either from soil contamination or
	volatilisation of contaminants from groundwater);
	 Contact (dermal, ingestion or inhalation) with exposed soils in landscaped areas
	and/or unpaved areas;
	 Contact with groundwater during construction;
	 Migration of groundwater off-site and into nearby water bodies, including
	aquatic ecosystems and those being used for recreation; and
	 Migration of groundwater off-site into areas where groundwater is being
S	utilised as a resource (i.e. for domestic or irrigation).
Droconco of profesential	Nono
Presence of preferential	None
pathways for contaminant	
movement	

4 SAMPLING, ANALYSIS AND QUALITY PLAN

4.1 Data Quality Objectives (DQO)

Data Quality Objectives (DQOs) have been developed to define the type and quality of data required to achieve the project objectives outlined in Section 1.2. The DQOs were prepared with reference to the process outlined in Schedule B2 of NEPM (2013). The seven-step DQO approach for this project is outlined in the following sub-sections.

The DQO process is validated in part by the Data Quality Assurance/Quality Control (QA/QC) Evaluation. The Data (QA/QC) Evaluation will be summarised in the DSI report.

4.1.1 Step 1 - State the Problem

The previous investigations identified potential sources of contamination/AEC at the site that may pose a risk to human health and the environment. Supplementary investigation data is required to assess the contamination status of the site, assess the risks posed by the contaminants in the context of the proposed development/intended land use, and assess whether remediation is required. This information will be considered by the project team in the design and delivery of the project as well as by the determining authority in exercising its planning functions in relation to the approval of the development proposal under Chapter 4, Clause 4.6 of SEPP Resilience and Hazards 2021.

A waste classification is required prior to off-site disposal of excavated soil/bedrock.

4.1.2 Step 2 - Identify the Decisions of the Study

The objectives of the supplementary environmental investigation are outlined in Section 1.2. The decisions to be made reflect these objectives and are as follows:

- Are any results above the SAC?
- Do potential risks associated with contamination exist, and if so, what are they?
- Is remediation required and what is this likely to involve?
- What is the waste classification of the in-situ fill material and natural soils/bedrock sampled and is further sampling/analysis required to confirm the waste classification(s)?
- Is the site suitable for the proposed development, or can the site be made suitable subject to further characterisation and/or remediation?

4.1.3 Step 3 - Identify Information Inputs

The primary information inputs required to address the decisions outlined in Step 2 include the following:

- Existing relevant environmental data from previous reports;
- Site information, including site observations and site history documentation;
- Sampling of potentially affected media, including soil and groundwater;
- Observations of sub-surface variables such as soil type, photo-ionisation detector (PID) concentrations, odours and staining, and groundwater physiochemical parameters;
- Laboratory analysis of soils, fibre cement (if identified) and groundwater samples for the CoPC identified in the CSM; and

S

• Field and laboratory QA/QC data.

4.1.4 Step 4 - Define the Study Boundary

The sampling will be confined to the site boundaries as shown in Figure 2 and will be limited vertically to the base of the fill material for asbestos characterisation, approximately 0.5m into the natural soils/bedrock for all other AEC/CoPC in soil (where practicable) and a maximum nominated sampling depth of 12.7mBGL for groundwater (spatial boundary). The final depth could depend on site conditions and will be noted in the DSI. At this stage, the sampling is scheduled to be completed on 22 and 23 March 2025 (temporal boundary). Areas not accessible for sampling will be noted in the report as data gaps.

4.1.5 Step 5 - Develop an Analytical Approach (or Decision Rule)

4.1.5.1 Tier 1 Screening Criteria

The laboratory data will be assessed against relevant Tier 1 screening criteria (referred to as SAC), as outlined in Section 5. Exceedances of the SAC do not necessarily indicate a requirement for remediation or a risk to human health and/or the environment. Exceedances are considered in the context of the CSM and valid SPR-linkages.

For this investigation, the individual results will be assessed as either above or below the SAC. Statistical evaluation of the dataset via calculation of mean values and/or 95% upper confidence limit (UCL) values will not be undertaken due to the spatial distribution of the data and the number of samples submitted for analysis.

4.1.5.2 Field and Laboratory QA/QC

Field QA/QC will include analysis of inter-laboratory duplicates (minimum of 5% of primary samples), intralaboratory duplicates (minimum of 5% of primary samples), and trip spike (for volatiles), trip blank (for selected organic and inorganic compounds) and rinsate (for selected organic and inorganic compounds) samples (one for each medium sampled to assess the adequacy of field practices).

Further details regarding the sampling and analysis undertaken, and the acceptable limits adopted, will be included in the Data Quality (QA/QC) Evaluation presented in the DSI report.

The suitability of the laboratory data is assessed against the laboratory QA/QC criteria which will be outlined in the laboratory reports. These criteria are developed and implemented in accordance with the laboratory's National Association of Testing Authorities, Australia (NATA) accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence are reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, the most conservative concentration reported are to be adopted.

4.1.5.3 Appropriateness of Practical Quantitation Limits (PQLs)

The PQLs of the analytical methods are to be considered in relation to the SAC to confirm that the PQLs are less than the SAC. In cases where the PQLs are greater than the SAC, a discussion of this is provided.

4.1.6 Step 6 – Specify Limits on Decision Errors

To limit the potential for decision errors, a range of quality assurance processes are adopted. A quantitative assessment of the potential for false positives and false negatives in the analytical results will be undertaken with reference to Schedule B(3) of NEPM (2013) using the data quality assurance information collected.

Quantitative limits on decision errors are not proposed to be established as the sample plan is not probabilistic. Data will be assessed based on a multiple lines of evidence and risk-based approach.

Data Quality Indicators (DQI) for field and laboratory QA/QC samples are defined below. An assessment of the DQI's is to be made in relation to precision, accuracy, representativeness, completeness and comparability.

Field Duplicates

Acceptable targets for precision of field duplicates will be 30% or less, consistent with NEPM (2013). RPD failures will be considered qualitatively on a case-by-case basis taking into account factors such as the concentrations used to calculate the RPD (i.e. RPD exceedance where concentrations are close to the PQL are typically not as significant as those where concentrations are reported at least five or 10 times the PQL), sample type, collection methods and the specific analyte where the RPD exceedance was reported.

Trip Blanks

Acceptable targets for field blank samples in this report will be less than the PQL for organic analytes. Metals will be considered on a case-by-case basis with regards to typical background concentrations in soils and published drinking water guidelines for waters.

Trip Spikes

Acceptable targets for trip spike samples will be 70% to 130%.

Laboratory QA/QC

The suitability of the laboratory data will be assessed against the laboratory QA/QC criteria. These criteria are developed and implemented in accordance with the laboratory's NATA accreditation and align with the acceptable limits for QA/QC samples as outlined in NEPM (2013) and other relevant guidelines.

A summary of the typical limits is provided below:

RPDs

- Results that are <5 times the PQL, any RPD is acceptable; and
- Results >5 times the PQL, RPDs between 0-50% are acceptable.

Laboratory Control Samples (LCS) and Matrix Spikes

- 70-130% recovery acceptable for metals and inorganics; and
- 60-140% recovery acceptable for organics.

Surrogate Spikes

• 60-140% recovery acceptable for general organics.

Method Blanks

• All results less than PQL.

In the event that acceptable limits are not met by the laboratory analysis, other lines of evidence will be reviewed (e.g. field observations of samples, preservation, handling etc) and, where required, consultation with the laboratory is to be undertaken in an effort to establish the cause of the non-conformance. Where uncertainty exists, we will adopt the most conservative concentration reported.

4.1.7 Step 7 - Optimise the Design for Obtaining Data

The most resource-effective design will be used in an optimum manner to achieve the investigation objectives. The investigation has been designed considering available information however, adjustment of the investigation design can occur following consultation or feedback from project stakeholders. For this investigation, the design was optimised via consideration of the various lines of evidence used to select the sample locations, the media being sampled, and also by the way in which the data will be collected. The sampling plan and methodology are outlined in the following sub-sections.

4.2 Soil Sampling Plan and Methodology

The soil sampling plan and methodology proposed for the DSI is outlined in the table below:

Aspect	Input
Sampling	Samples for the supplementary environmental investigation will be collected from 17 locations
Density	(TP301 to TP317) as shown on the attached Figure 2. This number of locations meets the
	requirement for an increased sampling density for asbestos when it is confirmed/known to exist in
	soil, as outlined in the NSW EPA Sampling Design Part 1 – Application (2022) ⁹ contaminated land
	guidelines and the Guidelines for the Assessment, Remediation and Management of Asbestos-
	Contaminated Sites in Western Australia (2021) ¹⁰ .
5	Soil samples will be collected from TP302, TP307, TP308, TP309 and TP310 for additional waste
	classification purposes and all AEC and CoPC.
	Soil samples will be obtained from TP314 and TP315 for the CoPC associated with the AEC use of pesticides.

Table 4-1: Proposed Soil Sampling Plan and Methodology

⁹ NSW EPA, (2022). Sampling design part 1 - application. (referred to as EPA Sampling Design Guidelines 2022)

¹⁰ Western Australian (WA) Department of Health (DoH), (2021). *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia*. (referred to as WA DoH 2021)

Aspect	Input
Sampling Plan	The sampling locations will be placed on a judgemental sampling plan and will be broadly
	positioned for site coverage in areas outside of the proposed building/structure footprint. This
	sampling plan is considered suitable to further characterise the fill/soil for asbestos contamination
	and to make an assessment of potential risks associated with the AEC and CoPC identified in the
	CSM, and assess whether remediation is required.
	Fieldwork will occur with regards to the activity specific asbestos management plan (AMP) (report
	ref: E32976BT2rpt5, dated 19 March 2025). The AMP is attached in the appendices.
Set-out and	Sampling locations will be set out using a tape measure. In-situ sampling locations will be checked
Sampling	for underground services by an external contractor prior to sampling.
Equipment	
	Samples will be collected using an excavator with a mud bucket (flat edged bucket). Samples were
	obtained from the test pit walls or directly from the bucket by hand. Where sampling occurred
	from the bucket, JKE collected samples from the central portion of large soil clods, or from
	material that was unlikely to have come into contact with the bucket.
Sample	Soil samples will be obtained in accordance with our standard field procedures. Soil samples will
Collection and	be collected from the fill and natural profiles based on field observations. The sample depths will
Field QA/QC	be shown on the logs included in the DSI report.
	IT G
	Soil samples for contamination testing will be placed in glass jars with plastic caps and Teflon seals
	with minimal headspace. Samples for asbestos analysis will placed in zip-lock plastic bags.
	During sampling, soil at selected depths will be split into primary and duplicate samples for field
	QA/QC analysis (chemica) contaminants only). The field splitting procedure includes alternate
	filling of the sampling containers to obtain a representative split sample. Homogenisation of
	duplicate samples will not occur to minimise the potential for the release of volatile organic
	compounds.
	<u></u>
Field	A portable Photoionisation Detector (PID) fitted with a 10.6mV lamp will be used to screen the
Screening	samples for the presence of volatile organic compounds (VOCs). PID screening for VOCs will be
	undertaken on soil samples using the soil sample headspace method. VOC data will be obtained
	from partly filled zip-lock plastic bags following equilibration of the headspace gases. PID
	calibration records will be maintained for the project.
	The field screening for asbestos quantification will include the following:
	• A representative bulk sample (approximately 10L sample, to the extent achievable based on
-5	sample return) is to be collected from fill at 1m intervals, or from each distinct fill profile. The
	quantity of material for each sample may vary based on the return achieved using the auger.
	The bulk sample intervals will be shown on the borehole logs;
	Each sample will be weighed using an electronic scale;
	• Each bulk sample will be passed through a sieve with a 7.1mm aperture and inspected for the
	presence of fibre cement. If the soil are cohesive in nature, the samples will be subsequently
	placed on a contrasting support (blue tarpaulin) and inspected for the presence of fibre
	cement. Any soil clumps/nodules will be disaggregated;
	• The condition of fibre cement or any other suspected asbestos materials will be noted on the
	field records; and

Aspect	Input
	 If observed, any fragments of fibre cement in the bulk sample will be collected, placed in a zip lock bag and assigned a unique identifier. Calculations for asbestos content will be undertaker based on the requirements outlined in Schedule B1 of NEPM (2013), as summarised in Section 5.1.
	Bulk samples in unpaved areas will be taken from the top 100mm, then each distinct fill profile thereafter, with a minimum of one sample per 1m depth of each fill profile.
Decontami- nation and Sample Preservation	Sampling personnel will use disposable nitrile gloves during sampling activities. Re-usable samplin equipment will be decontaminated between sampling events using a Decon and potable water solution, followed by a rinse in potable water.
	Soil samples for chemical contaminants will be preserved by immediate storage in an insulated sample container with ice. On completion of the fieldwork, these samples may be stored temporarily in fridges in the JKE warehouse before being delivered in the insulated sample container to a NATA registered laboratory for analysis under standard chain of custody (COC) procedures.
	Soil samples and/or FCF for asbestos analysis will be stored in zip-lock bags and placed in a suitable container for transport. On completion of the fieldwork, these samples will be delivered in the container to a NATA registered laboratory for analysis under standard chain of custody (COC procedures.

4.3 Groundwater Sampling Plan and Methodology

The groundwater sampling plan and methodology proposed for the DSI is outlined in the table below:

Aspect	Input
Sampling Plan	It is proposed to sample from the three groundwater monitoring wells that were installed for the DSI. These include: MW203, MW207 and MW208 (refer to Figure 2 attached).
Monitoring Well Installation	The monitoring well construction details are documented on the appropriate borehole logs attached in Appendix B. The monitoring wells were installed to depths of approximately 9.4mBGL to 12.7mBGL.
Groundwater Sampling	Prior to sampling, the monitoring wells will be checked for the presence of Light Non-Aqueous Phase Liquids (LNAPL) using an inter-phase probe electronic dip meter.
	The monitoring well head space will be checked for VOCs using a calibrated PID unit. The samples will be obtained using a peristaltic pump/disposable plastic bailer.
	During sampling, the following parameters will be monitored using calibrated field instruments:SWL using an electronic dip meter; and
	• pH, temperature, EC, DO and Eh using a YSI Multi-probe water quality meter.
	Steady state conditions are considered to have been achieved when the difference in the pH measurements is less than 0.2 units, the difference in conductivity is less than 10%, and when the SWL was not in drawdown.

Table 4-2: Proposed Groundwater Sampling Plan and Methodology

Aspect	Input
	Groundwater samples will be obtained directly from the single use PVC tubing and placed in the sample containers. Duplicate samples are to be obtained by alternate filling of sample containers. This technique is adopted to minimise disturbance of the samples and loss of volatile contaminants associated with mixing of liquids in secondary containers, etc.
	Groundwater removed from the wells during development and sampling will be transported to JKE in jerry cans and stored in holding drums prior to collection by a licensed waste water contractor for off-site disposal.
	The field monitoring record and calibration data will be included in the report.
Decontaminant	The inter-phase probe electronic dip meter will be decontaminated between monitoring wells
and Sample	using potable water (with rags and scrubbing brush), followed by a rinse with potable water. The
Preservation	groundwater sampling process utilises a peristaltic pump and single-use tubing, therefore no decontamination procedure for the sampling is considered necessary.
	The samples will be preserved with reference to the analytical requirements and placed in an
	insulated container with ice or ice bricks. On completion of the fieldwork, the samples may be
	temporarily stored in a fridge at the JKE office, before being delivered in the insulated sample
	container to a NATA registered laboratory for analysis under standard COC procedures.

4.4 Laboratory Analysis and Proposed Analytical Schedule

Samples will analysed by an appropriate, NATA Accredited laboratory using the analytical methods detailed in Schedule B(3) of NEPM 2013. The laboratory details are provided in the table below:

Table 4-3: Laboratory Details	`
Samples	Laboratory
All primary samples and field QA/QC samples including intra-laboratory duplicates, trip blanks, trip spikes, field rinsate samples	Envirolab Services Pty Ltd NSW, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)
Inter-laboratory duplicates	Envirolab Services Pty Ltd VIC, NATA Accreditation Number – 2901 (ISO/IEC 17025 compliance)

For the DSI, an allowance has been made for the following analysis:

- Up to 10 selected soil samples will be analysed for: asbestos (500ml);
- Up to two representative fibre cement fragments, if found on or in soil, will be analysed for asbestos;
- Up to four selected soil samples will be analysed for: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); PAHs; TRH; BTEX; OCPs and OPPs; and PCBs;
- Up to two selected soil samples will be analysed for: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); and, OCPs and OPPs;
- Up to two selected soil samples for TCLP leachability analysis for PAHs and selected metals has been included to provide a preliminary waste classification for the off-site disposal of soil in accordance with NSW EPA Waste Classification Guidelines Part 1: Classifying Waste (2014). In the event this budget is not utilised for TCLP analysis, it may be utilised for additional soil analysis, where deemed appropriate; and

• Up to three groundwater samples (allowance of one per well) will be analysed for: heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); and PAHs.

SUPPLEMENT APPENDIX ESTIGATION SAOP

5 SITE ASSESSMENT CRITERIA (SAC)

The following SAC derived from the NEPM 2013 and other guidelines, as discussed in the following subsections, will be adopted for the DSI.

5.1 Soil

Soil data will be compared to relevant Tier 1 screening criteria in accordance with NEPM (2013) as outlined below.

5.1.1 Human Health

- Health Investigation Levels (HILs) for a 'residential with accessible soils' exposure scenario (HIL-A). These SAC also apply to primary schools;
- Health Screening Levels (HSLs) for a 'low-high density residential' exposure scenario (HSL-A & HSL-B), which also apply to primary schools. HSLs will be calculated based on conservative assumptions including a 'sand' type and a depth interval of 0m to 1m;
- HSLs for direct contact presented in the CRC Care Technical Report No. 10 Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document (2011)¹¹; and
- Asbestos will be assessed against the HSL-A criteria. A summary of the asbestos criteria is provided in the table below:

Guideline	Applicability
Asbestos in Soil	The HSL-A criteria will be adopted for the assessment of asbestos in soil. The SAC adopted for asbestos are derived from the NEPM 2013 and based on the Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia (2021) ¹² .
	The SAC include the following:
	 No visible asbestos at the surface/in the top 10cm of soil;
	 <0.01% w/w bonded asbestos containing material (ACM) in soil; and
	 <0.001% w/w asbestos fines/fibrous asbestos (AF/FA) in soil.
	Concentrations for bonded ACM concentrations in soil are based on the following equation
	which is presented in Schedule B1 of NEPM (2013):
	% w/w asbestos in soil =% asbestos content x bonded ACM (kg)
.0	Soil volume (L) x soil density (kg/L)
	However, we are of the opinion that the actual soil volume in a 10L bucket varies considerably
5	due to the presence of voids, particularly when assessing cohesive soils. Therefore, each
	bucket sample was weighed using electronic scales and the above equation was adjusted as
	follows (we note that the units have also converted to grams):
	% w/w asbestos in soil =% asbestos content x bonded ACM (g)
	Soil weight (g)

Table 5-1: Details for Asbestos SAC

¹¹ Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC Care), (2011). Technical Report No. 10 - *Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document*

¹² Western Australian (WA) Department of Health (DoH), (2021). *Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia*. (referred to as WA DoH 2021)

5.1.2 Environment (Ecological – terrestrial ecosystems)

- Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) for an 'urban residential and public open space' (URPOS) exposure scenario. The EILs will only be applied to the top 2m of soil as outlined in NEPM (2013). The criterion for benzo(a)pyrene will be increased from the value presented in NEPM (2013) based on the Canadian Soil Quality Guidelines¹³;
- ESLs will be adopted based on the soil type; and
- EILs for selected metals will be calculated based on the most conservative added contaminant limit (ACL) values presented in Schedule B(1) of NEPM (2013) and published ambient background concentration (ABC) values presented in the document titled Trace Element Concentrations in Soils from Rural and Urban Areas of Australia (1995)¹⁴. This method is considered to be adequate for the Tier 1 screening.

5.1.3 Management Limits for Petroleum Hydrocarbons

Management limits for petroleum hydrocarbons (as presented in Schedule B1 of NEPM 2013) will be considered.

5.1.4 Waste Classification

Data for the waste classification assessment will be assessed in accordance with the Waste Classification Guidelines, Part 1: Classifying Waste (2014)¹⁵ as outlined in the following table:

Table 5-2: Waste Categories

Category	Description
General Solid Waste (non-putrescible)	 If Specific Contaminant Concentration (SCC) ≤ Contaminant Threshold (CT1) then Toxicity Characteristics Leaching Procedure (TCLP) not needed to classify the soil as general solid waste; and If TCLP ≤ TCLP1 and SCC ≤ SCC1 then treat as general solid waste.
Restricted Solid Waste	• If SCC ≤ CT2 then TCLP not needed to classify the soil as restricted solid waste; and
(non-putrescible)	• NFTCLP \leq TCLP2 and SCC \leq SCC2 then treat as restricted solid waste.
Hazardous Waste	 If SCC > CT2 then TCLP must be undertaken to classify the soil as hazardous waste; and If TCLP > TCLP2 and/or SCC > SCC2 then treat as hazardous waste.
Virgin Excavated Natural Material (VENM)	 Natural material (such as clay, gravel, sand, soil or rock fines) that meet the following: That has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial mining or agricultural activities; That does not contain sulfidic ores or other waste; and Includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved from time to time by a notice published in the NSW Government Gazette.

¹³ Canadian Council of Ministers of the Environment, (1999). *Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)* (referred to as the Canadian Soil Quality Guidelines)

 ¹⁴ Olszowy, H., Torr, P., and Imray, P., (1995), *Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4.* Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission
 ¹⁵ NSW EPA, (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* (referred to as Waste Classification Guidelines 2014)

5.2 Groundwater

Groundwater data will be compared to relevant Tier 1 screening criteria in accordance with NEPM (2013), following an assessment of environmental values in accordance with the Guidelines for the Assessment and Management of Groundwater Contamination (2007)¹⁶. Environmental values for the supplementary environmental investigation include aquatic ecosystems, human uses (consumption, incidental contact and recreational water use), and human-health risks in non-use scenarios (vapour intrusion).

5.2.1 Human Health

- During the DSI, bedrock was encountered at depths shallower than 2mBGL and groundwater was encountered at depths of 3.84mBGL to 6.34mBGL. On this basis, a site-specific assessment (SSA) for the Tier 1 screening of human health risks posed by volatile contaminants in groundwater will be undertaken. The assessment will include a selection of alternative Tier 1 criteria that are considered suitably protective of human health. These criteria are based on drinking water guidelines and have been referred to as HSL-SSA. The criteria will be based on the USEPA Region 9 screening levels for naphthalene (threshold value for tap water);
- The Australian Drinking Water Guidelines 2011 (updated 2021)¹⁷ will be multiplied by a factor of 10 to assess potential risks associated with incidental/recreational-type exposure to groundwater (e.g. within down-gradient water bodies, with bore water used for irrigation, or with seepage water during construction). These have been deemed as 'recreational' SAC; and
- ADWG 2011 criteria will be adopted as screening criteria for consumption of groundwater.

5.2.2 Environment (Ecological - aquatic ecosystems)

Groundwater Investigation Levels (GILs) for 95% protection of freshwater species will be adopted based on the Default Guideline Values in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2018)¹⁸. The 99% trigger values will be adopted where required to account for bioaccumulation. Low and moderate reliability trigger values will also be adopted for some contaminants where high-reliability trigger values don't exist.

¹⁶ NSW Department of Environment and Conservation, (2007). *Guidelines for the Assessment and Management of Groundwater Contamination*.

¹⁷ National Health and Medical Research Council (NHMRC), (2021). *National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011* (referred to as ADWG 2011)

¹⁸ Australian and New Zealand Governments (ANZG), (2018). *Australian and New Zealand Guidelines for Fresh and Marine Water Quality*. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia (referred to as ANZG 2018)

6 **REPORTING REQUIREMENTS**

A supplementary environmental investigation report is to be prepared presenting the results of the investigation, generally in accordance with the NSW EPA Consultants Reporting on Contaminated Land, Contaminated Land Guidelines (2020)¹⁹. SUPPLEMENTARY INVESTIGATION SAOP

¹⁹ NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

7 LIMITATIONS

The report limitations are outlined below:

- This SAQP was developed based on the information available, as documented in this plan. There is always a potential that the proposed investigation will identify contamination impacts (actual or potential) that trigger a need for further investigation;
- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during development works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during construction work;
- This report has been prepared based on site conditions which existed at the time of the investigation; scope of work and limitation outlined in the JKE proposal; and terms of contract between JKE and the client (as applicable);
- The plan is based on investigation of conditions at specific locations, chosen to be as representative as possible under the given circumstances, visual observations of the site and immediate surrounds and documents reviewed as described in the report;
- Subsurface soil and rock conditions encountered between investigation locations may be found to be different from those expected. Groundwater conditions may also vary, especially after climatic changes;
- The preparation of this report has been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE accept no responsibility for potentially asbestos containing materials that may exist at the site. These materials may be associated with demolition of pre-1990 constructed buildings or fill material at the site;
- JKE have not and will not make any determination regarding finances associated with the site;
- Additional investigation work may be required in the event of changes to the proposed development or landuse. JKE should be contacted immediately in such circumstances;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

Important Information About This Report

These notes have been prepared by JKE to assist with the assessment and interpretation of this report.

The Report is based on a Unique Set of Project Specific Factors

This report has been prepared in response to specific project requirements as stated in the JKE proposal document which may have been limited by instructions from the client. This report should be reviewed, and if necessary, revised if any of the following occur:

- The proposed land use is altered;
- The defined subject site is increased or sub-divided;
- The proposed development details including size, configuration, location, orientation of the structures or landscaped areas are modified;
- The proposed development levels are altered, eg addition of basement levels; or
- Ownership of the site changes.

JKE will not accept any responsibility whatsoever for situations where one or more of the above factors have changed since completion of the investigation. If the subject site is sold, ownership of the investigation report should be transferred by JKE to the new site owners who will be informed of the conditions and limitations under which the investigation was undertaken. No person should apply an investigation for any purpose other than that originally intended without first conferring with the consultant.

Changes in Subsurface Conditions

Subsurface conditions are influenced by natural geological and hydrogeological process and human activities. Groundwater conditions are likely to vary over time with changes in climatic conditions and human activities within the catchment (e.g. water extraction for irrigation or industrial uses, subsurface waste water disposal, construction related dewatering). Soil and groundwater contaminant concentrations may also vary over time through contaminant migration, natural attenuation of organic contaminants, ongoing contaminating activities and placement or removal of fill material. The conclusions of an investigation report may have been affected by the above factors if a significant period of time has elapsed prior to commencement of the proposed development.

This Report is based on Professional Interpretations of Factual Data

Site investigations identify actual subsurface conditions at the actual sampling locations at the time of the investigation. Data obtained from the sampling and subsequent laboratory analyses, available site history information and published regional information is interpreted by geologists, engineers or environmental scientists and opinions are drawn about the overall subsurface conditions, the nature and extent of contamination, the likely impact on the proposed development and appropriate remediation measures.

Actual conditions may differ from those inferred, because no professional, no matter how qualified, and no subsurface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an investigation indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, but steps can be taken to help minimise the impact. For this reason, site owners should retain the services of their consultants throughout the development stage of the project, to identify variances, conduct additional tests which may be needed, and to recommend solutions to problems encountered on site.

Investigation Limitations

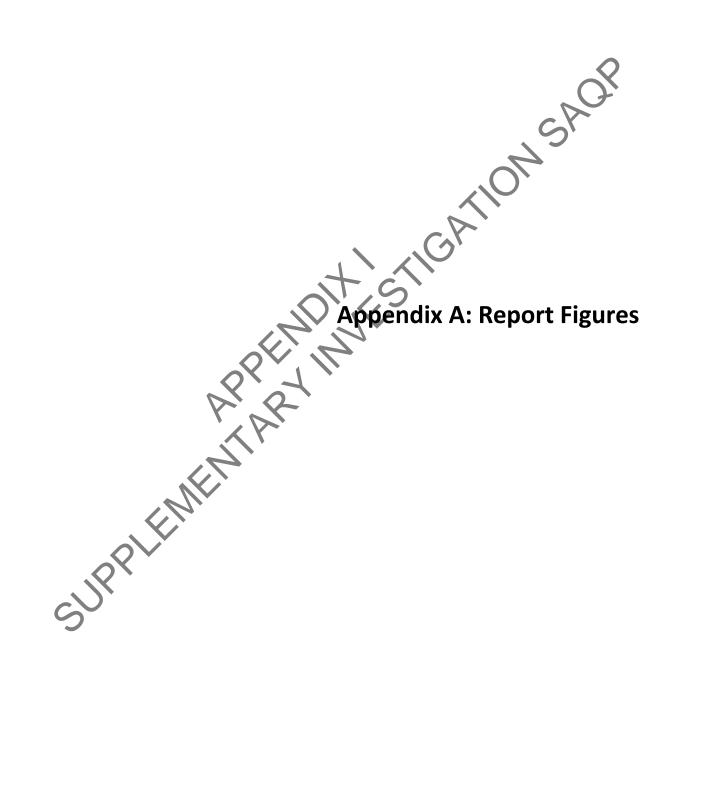
Although information provided by a site investigation can reduce exposure to the risk of the presence of contamination, no environmental site investigation can eliminate the risk. Even a rigorous professional investigation may not detect all contamination on a site. Contaminants may be present in areas that were not surveyed or sampled, or may migrate to areas which showed no signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant which may occur; only the most likely contaminants are screened.

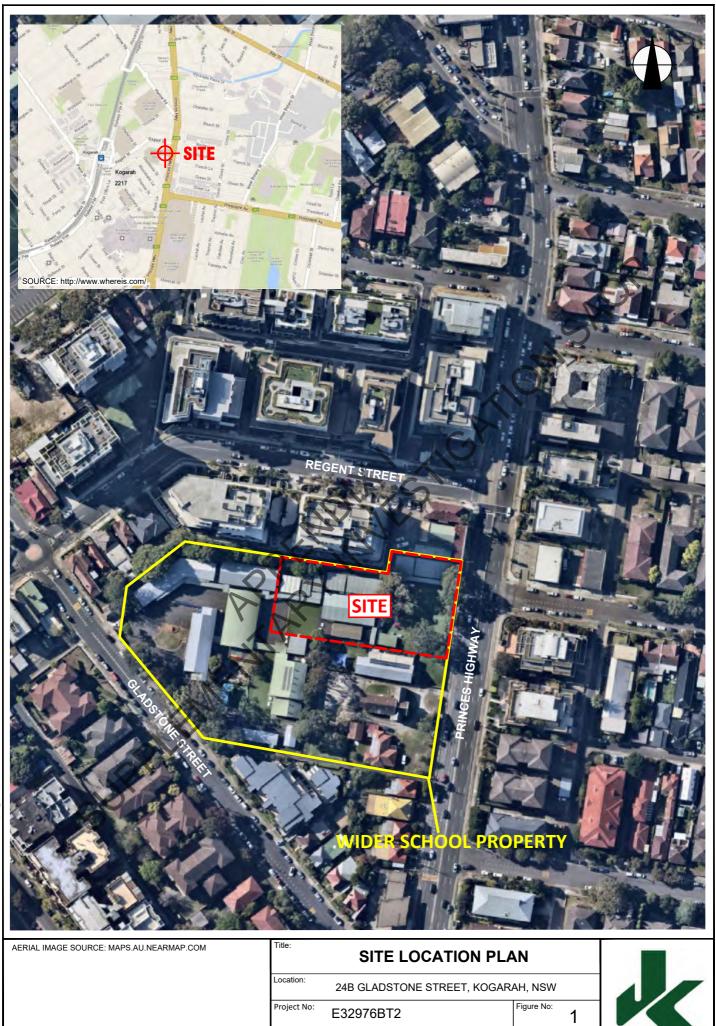
Misinterpretation of Site Investigations by Design Professionals

Costly problems can occur when other design professionals develop plans based on misinterpretation of an investigation report. To minimise problems associated with misinterpretations, the environmental consultant should be retained to work with appropriate professionals to explain relevant findings and to review the adequacy of plans and specifications relevant to contamination issues.

Logs Should not be Separated from the Investigation Report

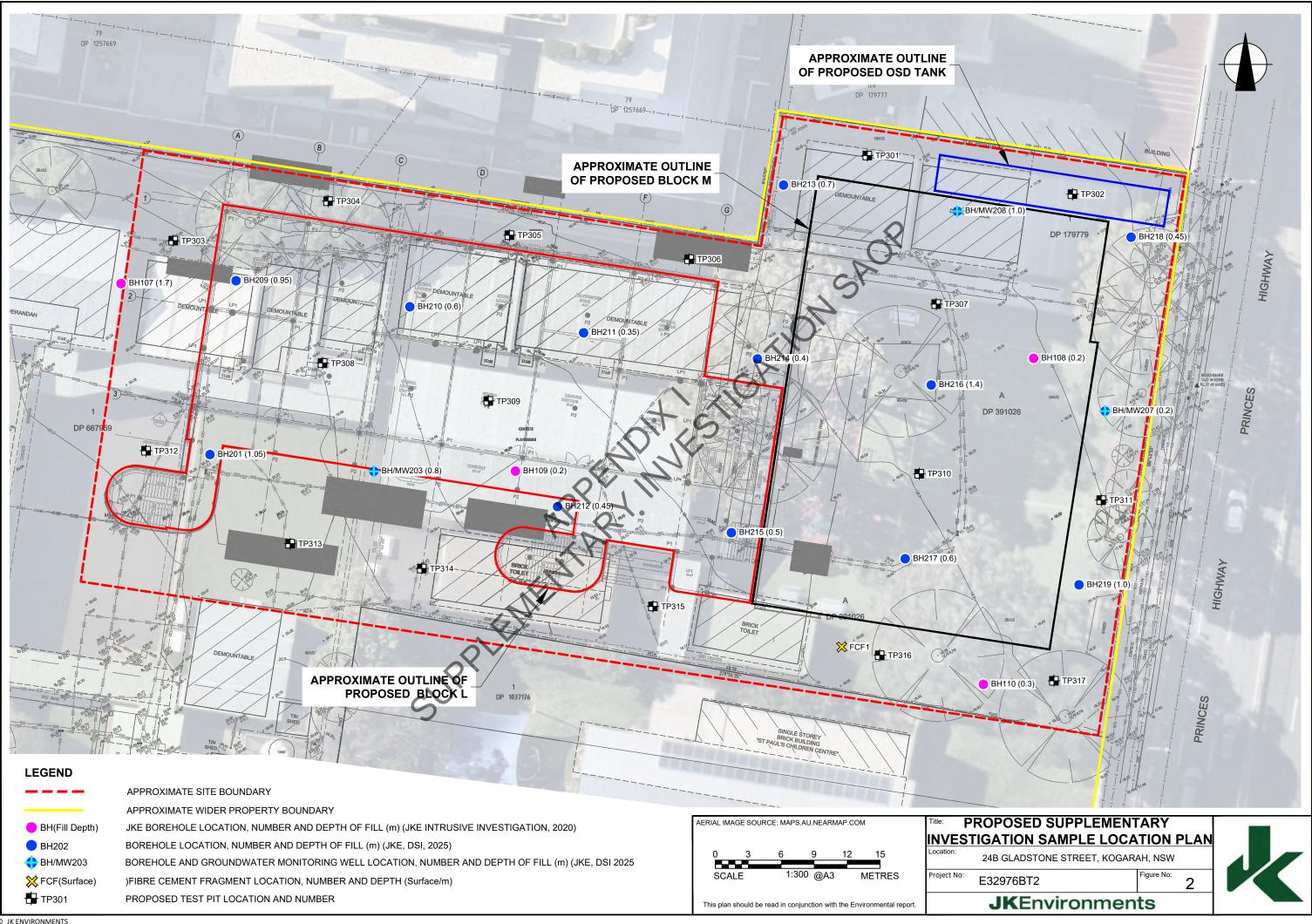
Borehole and test pit logs are prepared by environmental scientists, engineers or geologists based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these should not be re-drawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however contractors can still misinterpret the logs during bid preparation if separated from the text of the investigation. If this occurs, delays, disputes and unanticipated costs may result. In all cases it is necessary to refer to the rest of the report to obtain a proper understanding of the investigation. Please note that logs with the 'Environmental Log' header are not suitable for geotechnical purposes as they have not been peer reviewed by a Senior Geotechnical Engineer.


To reduce the likelihood of borehole and test pit log misinterpretation, the complete investigation should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of subsurface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations such as contractors.


Read Responsibility Clauses Closely

Because an environmental site investigation is based extensively on judgement and opinion, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. To help prevent this problem, model clauses have been developed for use in written transmittals. These are definitive clauses designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site investigation, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to any questions.

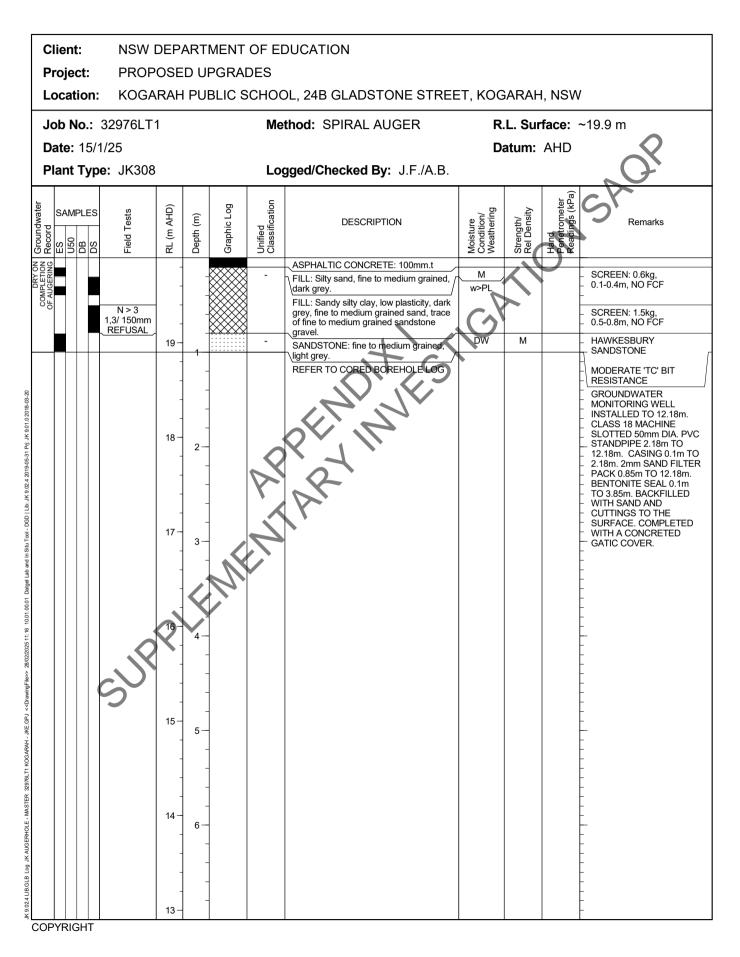
Jr. Laction Lareence Lons SUPPLEMENT



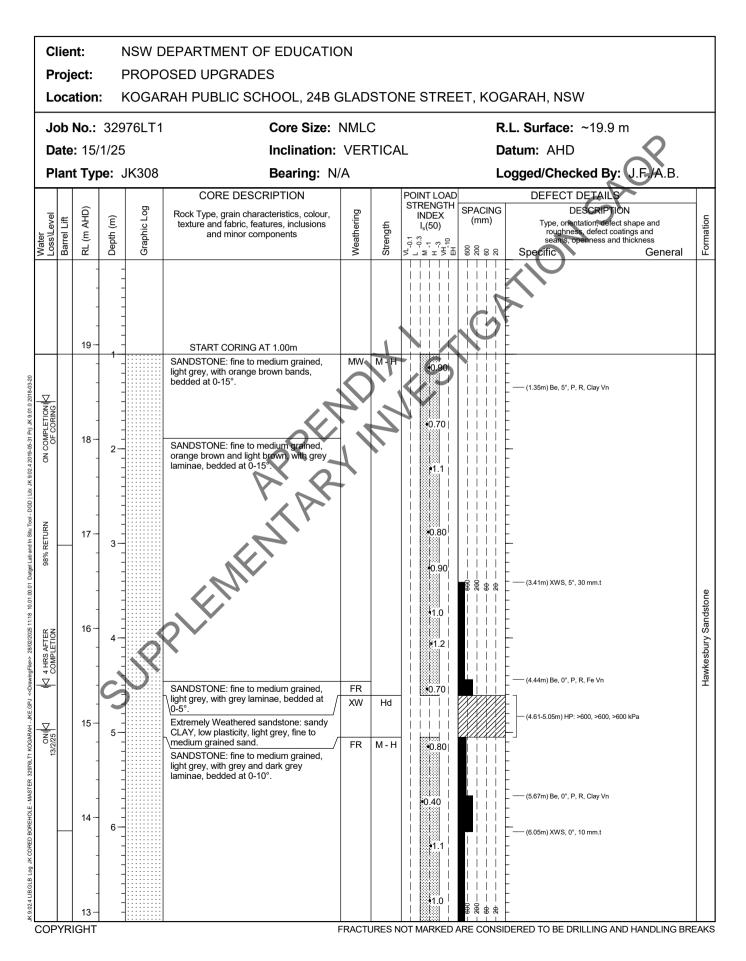
JKEnvironments

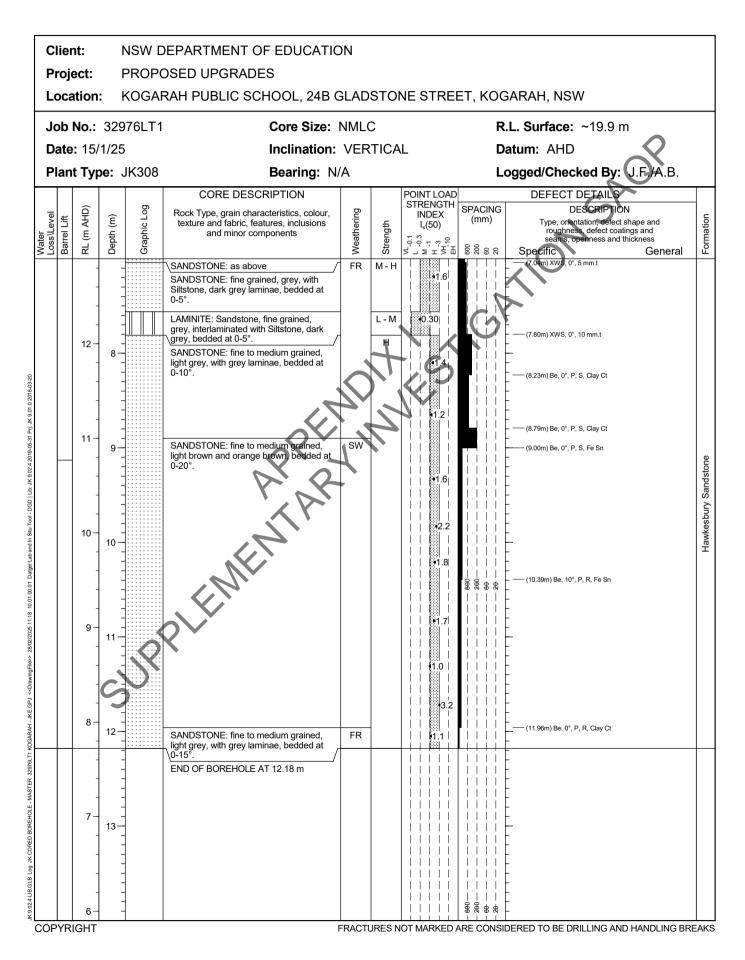
This plan should be read in conjunction with the Environmental report.

© JK ENVIRONMENTS

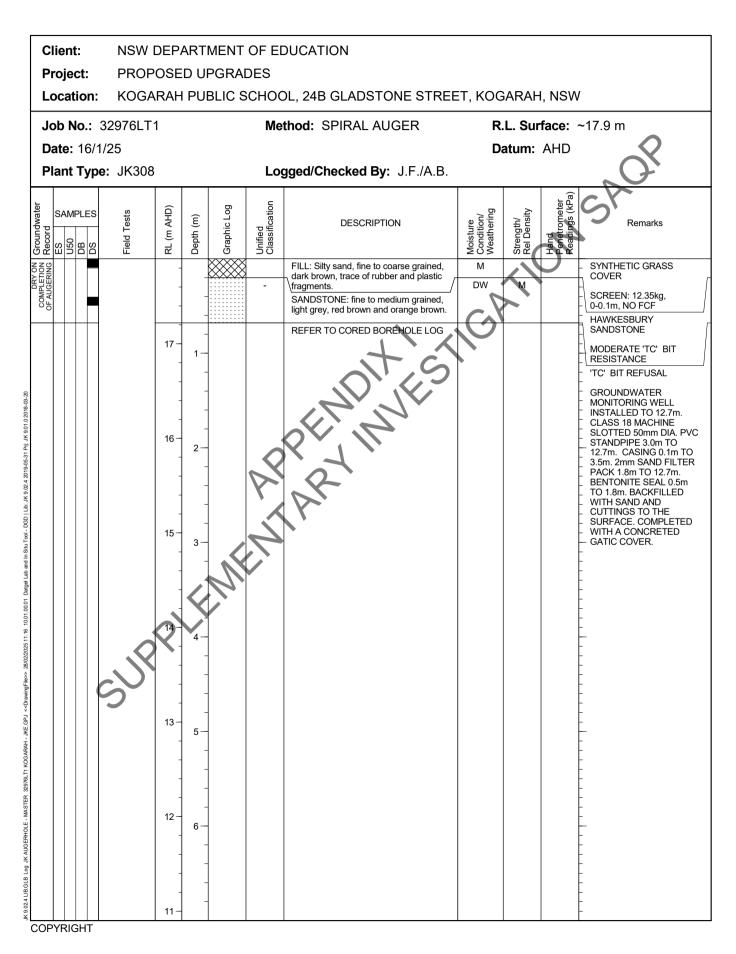


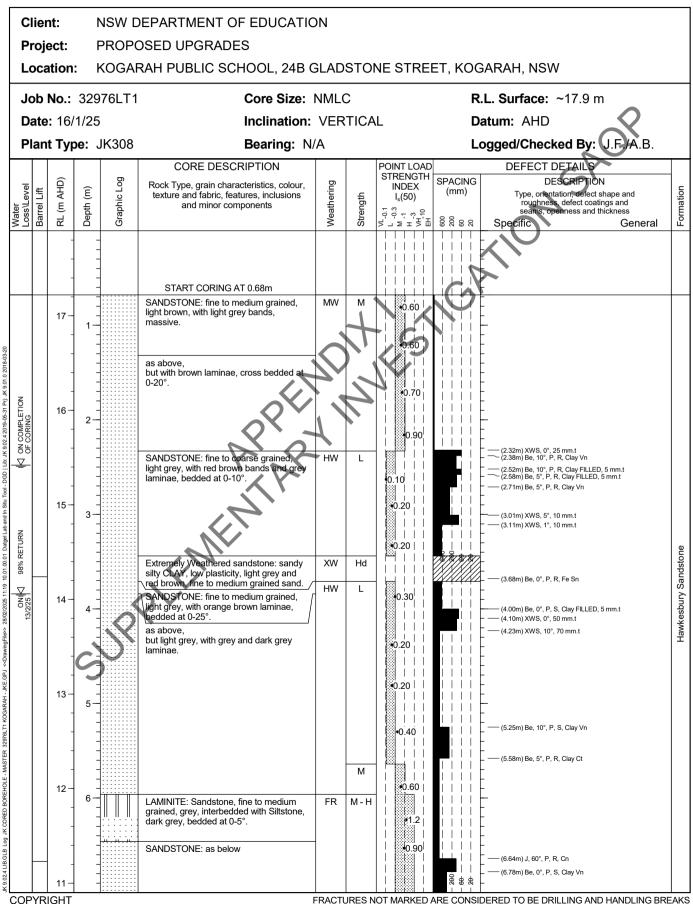
Appendix B: Borehole Logs for Existing Monitoring Wells


BOREHOLE LOG

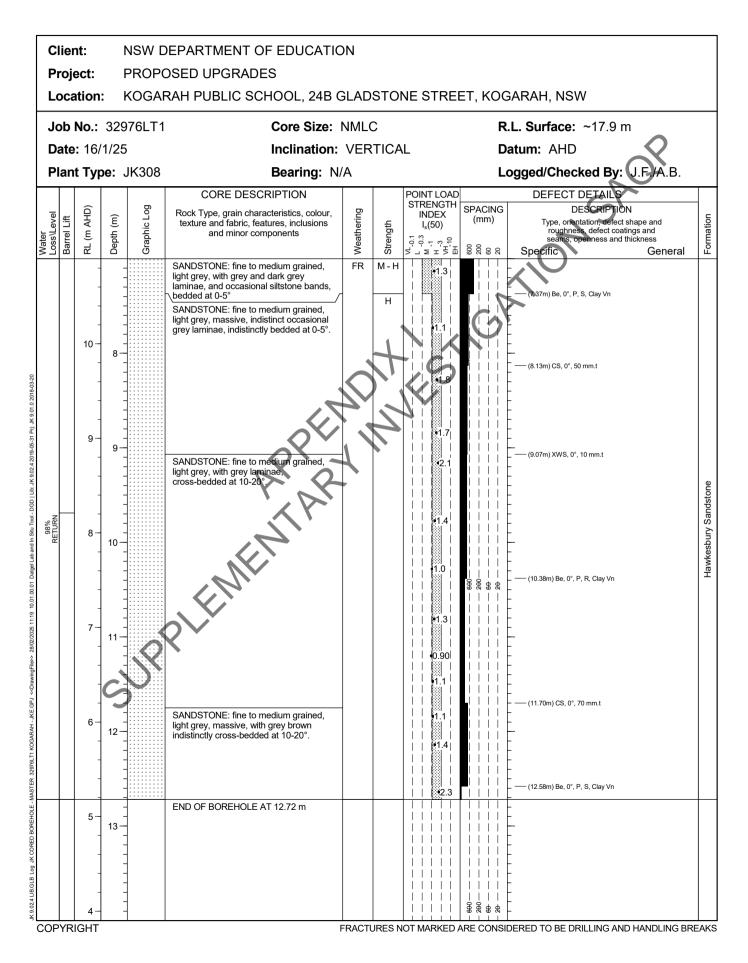

CORED BOREHOLE LOG

CORED BOREHOLE LOG

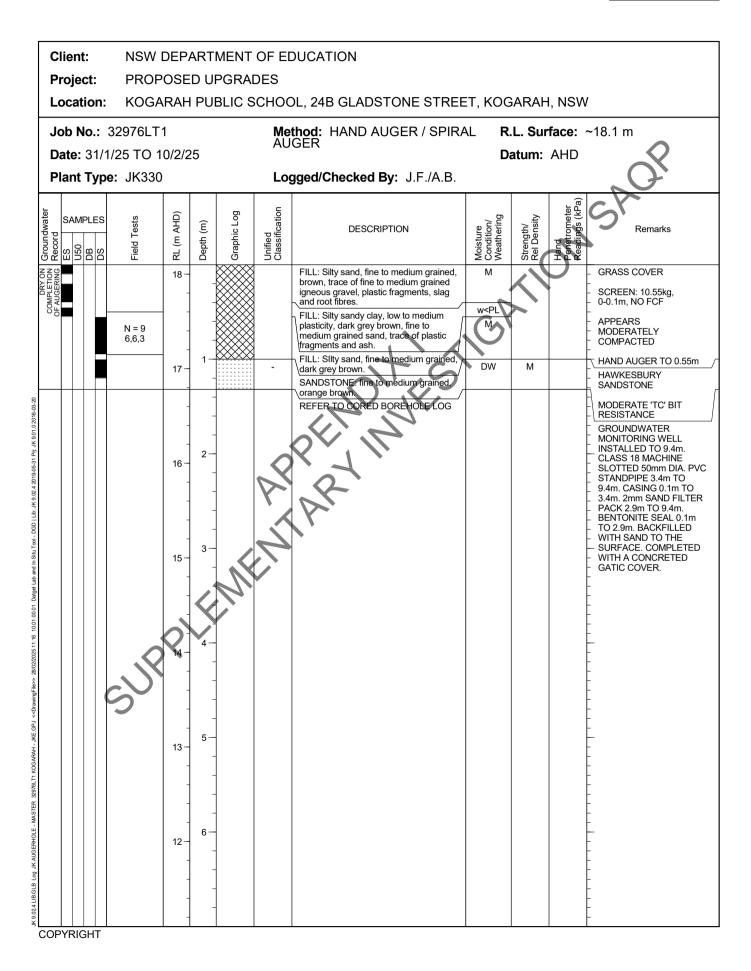


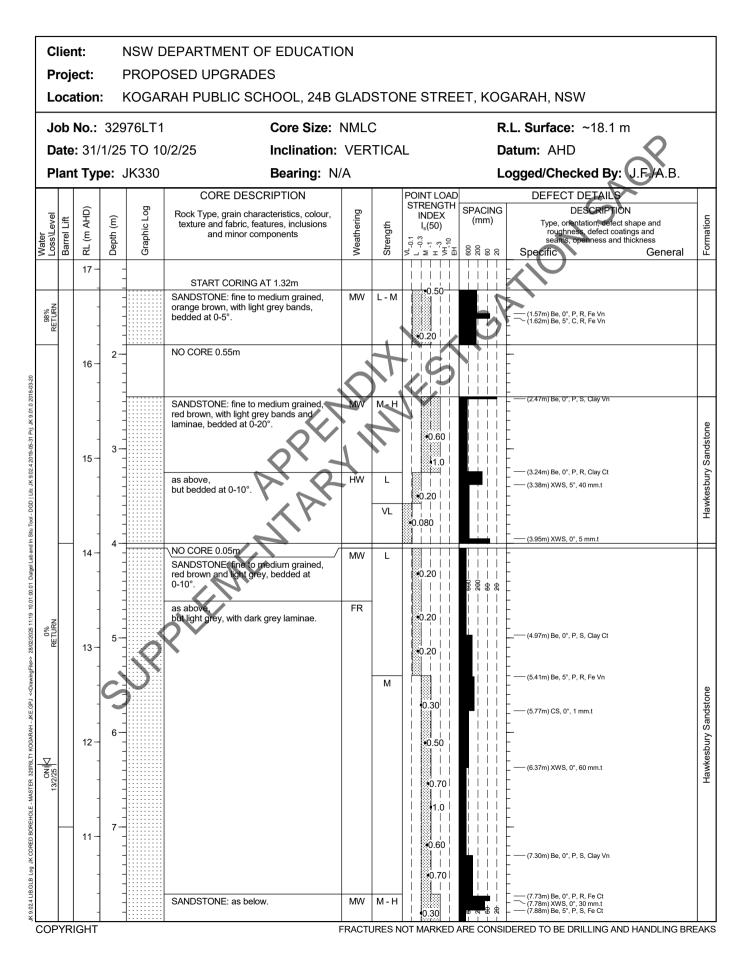

BOREHOLE LOG

CORED BOREHOLE LOG

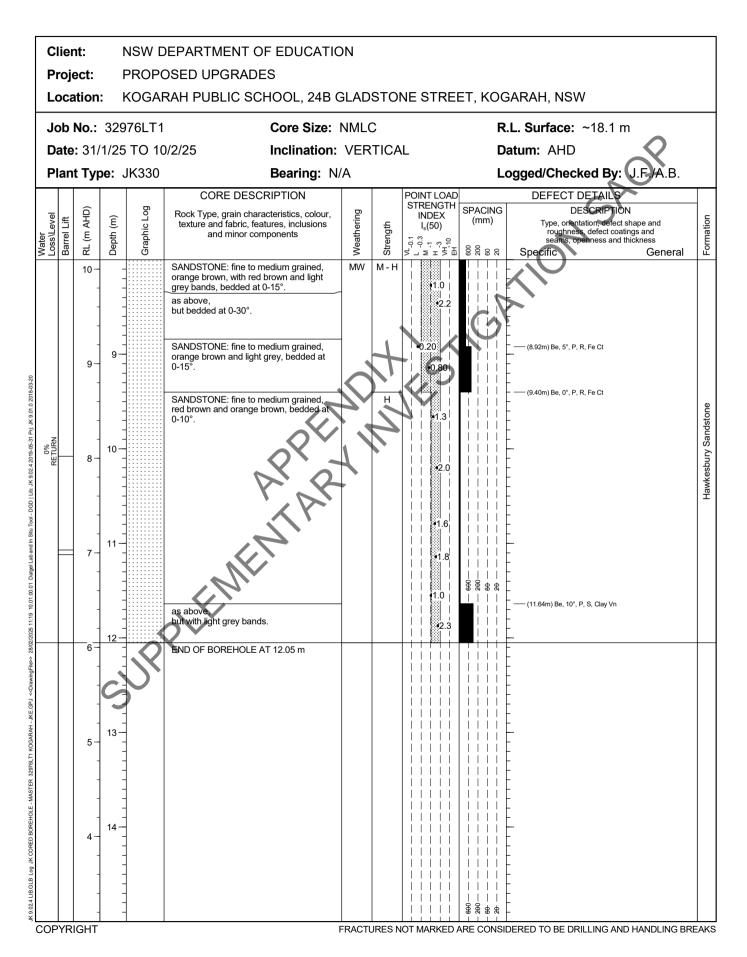


FRACTURES NOT MARKED ARE CONSIDERED TO BE DRILLING AND HANDLING BREAKS


CORED BOREHOLE LOG


BOREHOLE LOG

Borehole No. 208 1 / 3


CORED BOREHOLE LOG

CORED BOREHOLE LOG

ENVIRONMENTAL LOGS EXPLANATION NOTES

INTRODUCTION

These notes have been provided to amplify the environmental report in regard to classification methods, field procedures and certain matters relating to the logging of soil and rock. Not all notes are necessarily relevant to all reports.

Where geotechnical borehole logs are utilised for environmental purpose, reference should also be made to the explanatory notes included in the geotechnical report. Environmental logs are not suitable for geotechnical purposes.

The ground is a product of continuing natural and man-made processes and therefore exhibits a variety of characteristics and properties which vary from place to place and can change with time. Environmental studies include gathering and assimilating limited facts about these characteristics and properties in order to understand or predict the behaviour of the ground on a particular site under certain conditions. This report may contain such facts obtained by inspection, excavation, probing, sampling, testing or other means of investigation. If so, they are directly relevant only to the ground at the place where and time when the investigation was carried out.

DESCRIPTION AND CLASSIFICATION METHODS

The methods of description and classification of soils and rocks used in this report are based on Australian Standard 1726:2017 *'Geotechnical Site Investigations'*. In general, descriptions cover the following properties – soil or rock type, colour, structure, strength or density, and inclusions. Identification and classification of soil and rock involves judgement and the Company infers accuracy only to the extent that is common in current geoenvironmental practice.

Soil types are described according to the predominating particle size and behaviour as set out in the attached soil classification table qualified by the grading of other particles present (eg. sandy clay) as set out below:

Non-cohesive soils are classified on the basis of relative density, generally from the results of Standard Penetration Test (SPT) as below:

Relative Density	SPT 'N' Value (blows/300mm)
Very loose (VL)	< 4
Loose (L)	4 to 10
Medium dense (MD)	10 to 30
Dense (D)	30 to 50
Very Dense (VD)	> 50

Cohesive soils are classified on the basis of strength (consistency) either by use of a hand penetrometer, vane shear, laboratory testing and/or tactile engineering examination. The strength terms are defined as follows.

Classification	Unconfined Compressive Strength (kPa)	Indicative Undrained Shear Strength (kPa)
Very Soft (VS)	≤25	≤12
Soft (S)	> 25 and \leq 50	> 12 and \leq 25
Firm (F)	> 50 and ≤ 100	> 25 and \leq 50
Stiff (St)	$>$ 100 and \leq 200	> 50 and ≤ 100
Very Stiff (VSt)	$>$ 200 and \leq 400	$>$ 100 and \leq 200
Hard (Hd)	> 400	> 200
Friable (Fr)	Strength not attainable	– soil crumbles

Rock types are classified by their geological names, together with descriptive terms regarding weathering, strength, defects, etc. Where relevant, further information regarding rock classification is given in the text of the report. In the Sydney Basin, 'shale' is used to describe fissile mudstone, with a weakness parallel to bedding. Rocks with alternating inter-laminations of different grain size (eg. siltstone/claystone and siltstone/fine grained sandstone) are referred to as 'laminite'.

INVESTIGATION METHODS

The following is a brief summary of investigation methods currently adopted by the Company and some comments on their use and application. All methods except test pits, hand auger drilling and portable Dynamic Cone Penetrometers require the use of a mechanical rig which is commonly mounted on a truck chassis or track base.

Test Pits: These are normally excavated with a backhoe or a tracked excavator, allowing close examination of the insitu soils and 'weaker' bedrock if it is safe to descend into the pit. The depth of penetration is limited to about 3m for a backhoe and up to 6m for a large excavator. Limitations of test pits are the problems associated with disturbance and difficulty of reinstatement and the consequent effects on close-by structures. Care must be taken if construction is to be carried out near test pit locations to either properly recompact the backfill during construction or to design and construct the

structure so as not to be adversely affected by poorly compacted backfill at the test pit location.

Hand Auger Drilling: A borehole of 50mm to 100mm diameter is advanced by manually operated equipment. Refusal of the hand auger can occur on a variety of materials such as obstructions within any fill, tree roots, hard clay, gravel or ironstone, cobbles and boulders, and does not necessarily indicate rock level.

Continuous Spiral Flight Augers: The borehole is advanced using 75mm to 115mm diameter continuous spiral flight augers, which are withdrawn at intervals to allow sampling and insitu testing. This is a relatively economical means of drilling in clays and in sands above the water table. Samples are returned to the surface by the flights or may be collected after withdrawal of the auger flights, but they can be very disturbed and layers may become mixed. Information from the auger sampling (as distinct from specific sampling by SPTs or undisturbed samples) is of limited reliability due to mixing or softening of samples by groundwater, or uncertainties as to the original depth of the samples. Augering below the groundwater table is of even lesser reliability than augering above the water table.

Rock Augering: Use can be made of a Tungsten Carbide (TC) bit for auger drilling into rock to indicate rock quality and continuity by variation in drilling resistance and from examination of recovered rock cuttings. This method of investigation is quick and relatively inexpensive but provides only an indication of the likely rock strength and predicted values may be in error by a strength order. Where rock strengths may have a significant impact on construction feasibility or costs, then further investigation by means of cored boreholes may be warranted.

Wash Boring: The borehole is usually advanced by a rotary bit, with water being pumped down the drill rods and returned up the annulus, carrying the drill cuttings. Only major changes in stratification can be assessed from the cuttings, ogether with some information from "feel" and rate of penetration.

Mud Stabilised Drilling: Either Wash Boring or Continuous Core Drilling can use drilling mud as a circulating fluid to stabilise the borehole. The term 'mud' encompasses a range of products ranging from bentonite to polymers. The mud tends to mask the cuttings and reliable identification is only possible from intermittent intact sampling (eg. from SPT and U50 samples) or from rock coring, etc.

Continuous Core Drilling: A continuous core sample is obtained using a diamond tipped core barrel. Provided full core recovery is achieved (which is not always possible in very low strength rocks and granular soils), this technique provides a very reliable (but relatively expensive) method of investigation. In rocks, NMLC or HQ triple tube core barrels, which give a core of about 50mm and 61mm diameter, respectively, is usually used with water flush. The length of core recovered is compared to the length drilled and any length not recovered is shown as NO CORE. The location of NO CORE recovery is determined on site by the supervising engineer; where the location is uncertain, the loss is placed at the bottom of the drill run.

Standard Penetration Tests: Standard Penetration Tests (SPT) are used mainly in non-cohesive soils, but can also be used in cohesive soils, as a means of indicating density or strength and also of obtaining a relatively undisturbed sample. The test procedure is

described in Australian Standard 1289.6.3.1–2004 (R2016) 'Methods of Testing Soils for Engineering Purposes, Soil Strength and Consolidation Tests – Determination of the Penetration Resistance of a Soil – Standard Penetration Test (SPT)'.

The test is carried out in a borehole by driving a 50mm diameter split sample tube with a tapered shoe, under the impact of a 63.5kg hammer with a free fall of 760mm. It is normal for the tube to be driven in three successive 150mm increments and the 'N' value is taken as the number of blows for the last 300mm. In dense sands, very hard clays or weak rock, the full 450mm penetration may not be practicable and the test is discontinued.

The test results are reported in the following form:

 In the case where full penetration is obtained with successive blow counts for each 150mm of, say, 4, 6 and 7 blows, as

 In a case where the test is discontinued short of full penetration, say after 15 blows for the first 150mm and 30 blows for the next 40mm, as

The results of the test can be related empirically to the engineering properties of the soil.

A modification to the SPT is where the same driving system is used with a solid 60° tipped steel cone of the same diameter as the SPT hollow sampler. The solid cone can be continuously driven for some distance in soft clays or loose sands, or may be used where damage would otherwise occur to the SPT. The results of this Solid Cone Penetration Test (SCPT) are shown as 'N_c' on the borehole logs, together with the number of blows per 150mm penetration.

LOGS

The borehole or test pit logs presented herein are an interpretation of the subsurface conditions, and their reliability will depend to some extent on the frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will enable the most reliable assessment, but is not always practicable or possible to justify on economic grounds. In any case, the boreholes or test pits represent only a very small sample of the total subsurface conditions.

The terms and symbols used in preparation of the logs are defined in the following pages.

Interpretation of the information shown on the logs, and its application to design and construction, should therefore take into account the spacing of boreholes or test pits, the method of drilling or excavation, the frequency of sampling and testing and the possibility of other than 'straight line' variations between the boreholes or test pits. Subsurface conditions between boreholes or test pits may vary significantly from conditions encountered at the borehole or test pit locations.

GROUNDWATER

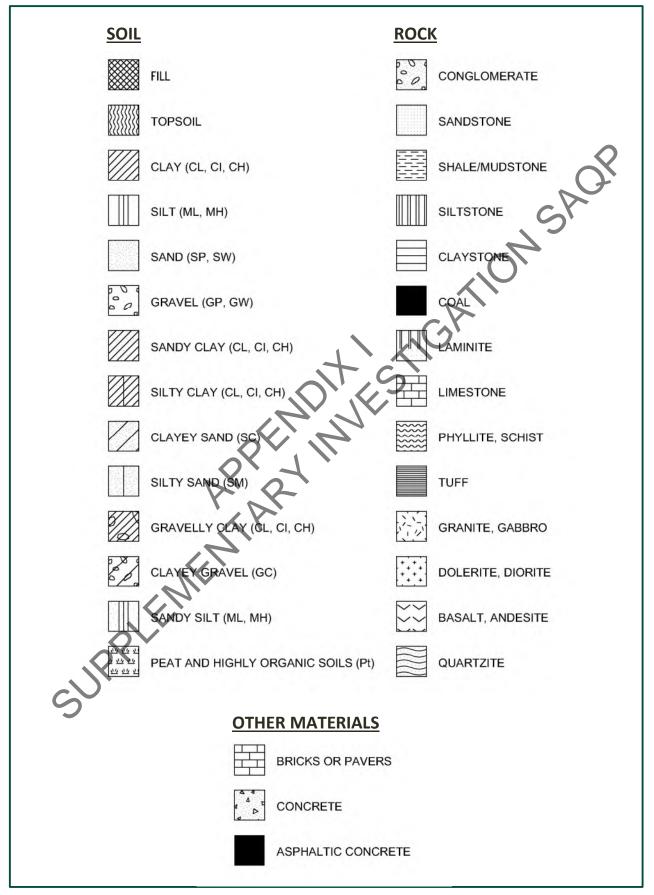
Where groundwater levels are measured in boreholes, there are several potential problems:

- Although groundwater may be present, in low permeability soils it may enter the hole slowly or perhaps not at all during the time it is left open.
- A localised perched water table may lead to an erroneous indication of the true water table.
- Water table levels will vary from time to time with seasons or recent weather changes and may not be the same at the time of construction.
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must be washed out of the hole or 'reverted' chemically if reliable water observations are to be made.

<text> More reliable measurements can be made by installing standpipes which are read after the groundwater level has stabilised at intervals ranging from several days to perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from perched water tables or surface water.

FILL

The presence of fill materials can often be determined only by the inclusion of foreign objects (eg. bricks, steel, etc) or by distinctly unusual colour, texture or fabric. Identification of the extent of fill materials will also depend on investigation methods and frequency. Where natural soils similar to those at the site are used for fill, it may be difficult with limited testing and sampling to reliably assess the extent of the fill.


The presence of fill materials is usually regarded with caution as the possible variation in density and material type is much greater than with natural soil deposits. Consequently, there is an increased risk of adverse environmental characteristics or behaviour. If the volume and nature of fill is of importance to a project, then frequent test pit excavations are preferable to boreholes.

LABORATORY TESTING

Laboratory testing has not been undertaken to confirm the soil classification and rock strengths indicated on the environmental logs

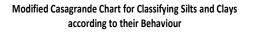
SYMBOL LEGENDS

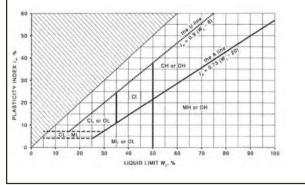
CLASSIFICATION OF COARSE AND FINE GRAINED SOILS

Han half Ittle or no fines enough fines to bind coarse grains, no dry strength Ittle or no fines GP Gravel and gravel-sand mixtures, little or no fines, uniform gravels Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength \$59 Ittle or no fines, uniform gravels Of coarse GR Gravel-silt mixtures and gravel- sand-silt mixtures 'Dirty' materials with excess of non-plastic fines, zero to medium dry strength are: \$12 Ittle or no fines GC Gravel-clay mixtures and gravel- 'Dirty' materials with excess of plastic fines, medium to high dry strength \$12			Group Symbol	Typical Names	Field Classification of Sand and Gravel	Laboratory Cl	assification
Gr Coarse GP Gravel and gravel-sand mixtures, little or no fines, uniform gravels Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength ≤ 5% GM Gravel-silt mixtures and gravel-sand gravel-sand mixtures, little or no fines, uniform gravels 'Dirty' materials with excess of non-plastic fines, zero to medium dry strength ≥ 12 GC Gravel-clay mixtures and gravel-sand gravel-sand downwitt were 'Dirty' materials with excess of plastic fines, medium to high dry strength ≥ 12	nor	e	GW	• · · ·		≤ 5% fines	C _u >4 1 <c<sub>c<3</c<sub>
GM Gravel-silt mixtures and gravel- sand-silt mixtures and gravel- GC Gravel-clay mixtures and gravel- GC Gravel-clay mixtures and gravel- be defined any mixtures and gravel- be defined any mixtures and gravel- control defined any mixtures		-	GP		, , , , , , , , , , , , , , , , , , , ,	≤ 5% fines	Fails to comply with above
$\frac{9}{9}$ E GC Gravel-clay mixtures and gravel- 'Dirty' materials with excess of plastic fines, medium to high dry strength ≥ 12			GM		'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥ 12% fines, fines are silty	Fines behave as silt
G G Salid-clay mixtures are			GC	Gravel-clay mixtures and gravel- sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	Fines behave as clay
SAND (more than half of coarse SW Sand and gravel-sand mixtures, little or no fines bind coarse grains, no dry strength SAND (more than half of coarse SW Sand and gravel-sand mixtures, little or no fines SW Sand and gravel-sand mixtures, little or no fines SW Sand and gravel-sand mixtures, little or no fines SW Sand and gravel-sand mixtures, little or no fines SW Sand and gravel-sand mixtures, little or no fines SW Sand and gravel-sand mixtures, little or no fines SW Sand and gravel-sand mixtures, little or no fines SW Sand and gravel-sand mixtures, little or no fines SW Sand and gravel-sand mixtures, little or no fines SW SAND (more than half of coarse SW Sand and gravel-sand mixtures, little or no fines SW SAND (more than half of coarse SW S	re		SW			≤ 5% fines	Cu≥6 1 <cc<3< td=""></cc<3<>
in g is smaller than SP Sand and gravel-sand mixtures, little or no fines Predominantly one size or range of sizes with some intermediate sizes missing, some int	:ha	n	SP			≤ 5% fines	Fails to comply with above
2.36mm) SM Sand-silt mixtures 'Dirty' materials with excess of non-plastic fines, zero to medium dry strength are:			SM	Sand-silt mixtures	'Dirty' materials with excess of non-plastic fines, zero to medium dry strength	≥12% fines, fines are silty	
			SC	Sand-clay mixtures	'Dirty' materials with excess of plastic fines, medium to high dry strength	≥ 12% fines, fines are clayey	N/A

	Major Divisions S			P'	Laboratory Classification				
Majo			Typical Names	Dry Strength	Dilatancy	Toughness	% < 0.075mm		
duđing m)	SILT and CLAY (low to medium	ML	Inorganic silt and very fine sand, rock flour, silty or clayey fine sand or silt with low plasticity	None to low	Slow to rapid	Low	Below A line		
	plasticity)	CL, CI	Inorganic clay of low to medium plasticity, gravelly clay, sandy clay	Medium to high	None to slow	Medium	Above A line		
an 35% ssthan		OL	Organic silt	Low to medium	Slow	Low	Below A line		
orethe onisle	a) EX COO EX COO Source that and CLAY SILT and CLAY (high plasticity) Signature Si		Inorganic silt	Low to medium	None to slow	Low to medium	Below A line		
soils (m te fracti			(high plasticity)	СН	Inorganic clay of high plasticit	High to very high	None	High	Above A line
ne grained: oversiz			Organic clay of medium to high plasticity, organic silt	Medium to high	None to very slow	Low to medium	Below A line		
.=	Highly organic soil	Pt	Peat, highly organic soil	-	-	-	-		

Laboratory Classification Criteria


A well graded coarse grained soil is one for which the coefficient of uniformity C_{U} = 4 and the coefficient of curvature 1 < C_c < 3. Otherwise, the soil is poorly graded. These coefficients are given by:


$$C_U = \frac{D_{60}}{D_{10}}$$
 and $C_C = \frac{(D_{30})^2}{D_{10} D_{60}}$

Where D_{10} , D_{30} and D_{60} are those grain sizes for which 10%, 30% and 60% of the soil grains, respectively, are smaller.

NOTES:

- 1 For a coarse grained soil with a fines content between 5% and 12%, the soil is given a dual classification comprising the two group symbols separated by a dash; for example, for a poorly graded gravel with between 5% and 12% silt fines, the classification is GP-GM.
- 2 Where the grading is determined from laboratory tests, it is defined by coefficients of curvature (C_c) and uniformity (C_u) derived from the particle size distribution curve.
- 3 Clay soils with liquid limits > 35% and ≤ 50% may be classified as being of medium plasticity.
- 4 The U line on the Modified Casagrande Chart is an approximate upper bound for most natural soils.

JKEnvironments

LOG SYMBOLS

Log Column	Symbol	Definition			
Groundwater Record	—	Standing water level. Time delay following completion of drilling/excavation may be sho	wn.		
	— с —	Extent of borehole/test pit collapse shortly after drilling/excavation.			
	•	Groundwater seepage into borehole or test pit noted during drilling or excavation.			
Samples	ES	Sample taken over depth indicated, for environmental analysis.			
	U50	Undisturbed 50mm diameter tube sample taken over depth indicated.			
	DB	Bulk disturbed sample taken over depth indicated.			
	DS	Small disturbed bag sample taken over depth indicated.	ж к		
	ASB ASS	Soil sample taken over depth indicated, for asbestos analysis.			
	SAL	Soil sample taken over depth indicated, for acid sulfate soil analysis.			
	PFAS				
	FIAS	Soil sample taken over depth indicated, for analysis of Per- and Polyfuoroalkyl Substance	.es.		
Field Tests	N = 17 4, 7, 10	Standard Penetration Test (SPT) performed between depths indicated by lines. Indifigures show blows per 150mm penetration. 'Refusal' refers to apparent hammer refusal the corresponding 150mm depth increment.			
	N _c = 5	Solid Cone Penetration Test (SCPT) performed between depths indicated by lines. Indi	ividual		
	7	figures show blows per 150mm penetration for 60° solid cone driven by SPT hammer. 'R'			
	3R	to apparent hammer refusal within the corresponding 150mm depth increment.			
		TG			
	VNS = 25	Vane shear reading in kPa of undrained shear strength.			
	PID = 100	Photoionisation detector reading in ppm (soil sample headspace test).			
Moisture Condition	w > PL	Moisture content estimated to be greater than plastic limit.			
(Fine Grained Soils)	w≈PL	Moisture content estimated to be approximately equal to plastic limit.			
	w < PL	Moisture content estimated to be less than plastic limit. Moisture content estimated to be near liquid limit.			
	w≈LL w>LL \	Moisture content estimated to be near inquid limit.			
(Coorse Crained Sails)					
(Coarse Grained Soils)	D	DRY - runs freely through fingers. MOIST – does not run freely but no free water visible on soil surface.			
	M W	WET – free water visible on soil surface.			
	vv				
Strength (Consistency)	∨\$	VERY SOFT – unconfined compressive strength \leq 25kPa.			
Cohesive Soils	les 1	SOFT – unconfined compressive strength > 25kPa and \leq 50kPa.			
	F	FIRM – unconfined compressive strength > 50kPa and \leq 100kPa.			
	St	STIFF – unconfined compressive strength > 100kPa and \leq 200kPa.			
	VSt	VERY STIFF – unconfined compressive strength > 200kPa and \leq 400kPa.			
	Hd Fr	HARD – unconfined compressive strength > 400kPa.			
\sim	Fr	FRIABLE – strength not attainable, soil crumbles.			
S	()	Bracketed symbol indicates estimated consistency based on tactile examination or assessment.	other		
Density Index/ Relative Density		Density Index (I _D) SPT 'N' Value Range Range (%) (Blows/300mm)			
(Cohesionless Soils)	VL	VERY LOOSE ≤15 0-4			
	L	LOOSE > 15 and ≤ 35 4 - 10			
	MD	MEDIUM DENSE > 35 and ≤ 65 10 - 30			
	D	DENSE > 65 and ≤ 85 30 - 50			
	VD	VERY DENSE > 85 > 50			
	()	Bracketed symbol indicates estimated density based on ease of drilling or other assessm	ient.		

Log Column	Symbol	Definition	
Hand Penetrometer Readings	300 250	Measures reading in kPa of unconfined compressive strength. Numbers indicate individual test results on representative undisturbed material unless noted otherwise.	
Remarks	′V′ bit ′TC′ bit T60 Soil Origin	 Hardened steel 'V' shaped bit. Twin pronged tungsten carbide bit. Penetration of auger string in mm under static load of rig applied by drill head hydraulics without rotation of augers. The geological origin of the soil can generally be described as: RESIDUAL - soil formed directly from insitu weathering of the underlying rock. No visible structure or fabric of the parent rock. EXTREMELY - soil formed directly from insitu weathering of the underlying rock. Material is of soil strength but retains the structure and/or fabric of the parent rock. ALLUVIAL - soil deposited by creeks and rivers. ESTUARINE - soil deposited in coastal estuaries, including sediments caused by inflowing creeks and rivers, and tidal currents. MARINE - soil carried and deposited by wind. COLLUVIAL - soil and rock debris transported downslope by gravity, with or without the assistance of flowing water. Colluvium is usually a thick deposit 	
SUPP	EME	formed from a landslide. The description 'slopewash' is used for thinner surficial deposite. LITTORAL – beach deposited soil.	

Classification of Material Weathering

Term		Abbreviation		Definition
Residual Soil		RS		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are no longer visible, but the soil has not been significantly transported.
Extremely Weathered		xw		Material is weathered to such an extent that it has soil properties. Mass structure and material texture and fabric of original rock are still visible.
Highly Weathered	Distinctly Weathered	HW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable. Rock strength is significantly changed by weathering. Some primary minerals have weathered to clay minerals. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores.
(Note 1) (Note 1)		MW		The whole of the rock material is discoloured, usually by iron staining or bleaching to the extent that the colour of the original rock is not recognisable, but shows little or no change of strength from fresh rock.
Slightly Weathered		SW		Rock is partially discoloured with staining or bleaching along joints but shows little or no change of strength from fresh rock.
Fresh	Fresh		R	Rock shows no sign of decomposition of individual minerals or colour changes.

NOTE 1: The term 'Distinctly Weathered' is used where it is not practicable to distinguish between 'Highly Weathered' and 'Moderately Weathered' rock. 'Distinctly Weathered' is defined as follows: '*Rock strength usually changed by weathering. The rock may be highly discoloured, usually by iron staining. Porosity may be increased by leaching, or may be decreased due to deposition of weathering products in pores'*. There is some change in rock strength.

Rock Material Strength Classification

		Q [×]	1	Guide to Strength
Term	Abbreviation	Uniaxial Compressive Strength (MIPa)	Point Load Strength Index Is ₍₅₀₎ (MPa)	Field Assessment
Very Low Strength	VL	0.6702	0.03 to 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with knife; too hard to cut a triaxial sample by hand. Pieces up to 30mm thick can be broken by finger pressure.
Low Strength	REP	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show in the specimen with firm blows of the pick point; has dull sound under hammer. A piece of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Medium Strength	М	6 to 20	0.3 to 1	Scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
High Strength	н	20 to 60	1 to 3	A piece of core 150mm long by 50mm diameter cannot be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
Very High Strength	VH	60 to 200	3 to 10	Hand specimen breaks with pick after more than one blow; rock rings under hammer.
Extremely High Strength	EH	> 200	> 10	Specimen requires many blows with geological pick to break through intact material; rock rings under hammer.

www.jkenvironments.com.au

T: +61 2 9888 5000 JK Environments Pty Ltd ABN 90 633 911 403

Report prepared by:

Katrina Taylor Senior Associate | Environmental Scientist Licenced Asbestos Assessor (LAA1025)

Brendan Page

Principal | Environmental Scientist

DOCUMENT REVISION RECORD

	Senior Associate Environmental Scie	entist
	Licenced Asbestos Assessor (LAA1025	5)
Report reviewed by:		\mathbf{O}
	Bildge Brendan Page	CHS'
	Principal Environmental Scientist	
For and on behalf of		
JKE		S.
PO BOX 976	TG	
NORTH RYDE BC NSW 1670		
DOCUMENT REVISION REC	ORD	
Report Reference	Report Status	Report Date
E32976BT2rpt5-AMP	Final Report	19 March 2025

© Document copyright of JK Environments (JKE)

This Report (which includes all attachments and annexures) has been prepared by JKE for the Client, and is intended for the use only by that Client.

This Report has been prepared pursuant to a contract between JKE and the Client and is therefore subject to:

- a) JKE's proposal in respect of the work covered by the Report;
- b) The limitations defined in the client's brief to JKE; and
- The terms of contract between JKE and the Client, including terms limiting the liability of JKE. c)

If the Client, or any person, provides a copy of this Report to any third party, such third party must not rely on this Report, except with the express written consent of JKE which, if given, will be deemed to be upon the same terms, conditions, restrictions and limitations as apply by virtue of (a), (b), and (c) above.

Any third party who seeks to rely on this Report without the express written consent of JKE does so entirely at their own risk and to the fullest extent permitted by law, JKE accepts no liability whatsoever, in respect of any loss or damage suffered by any such third party.

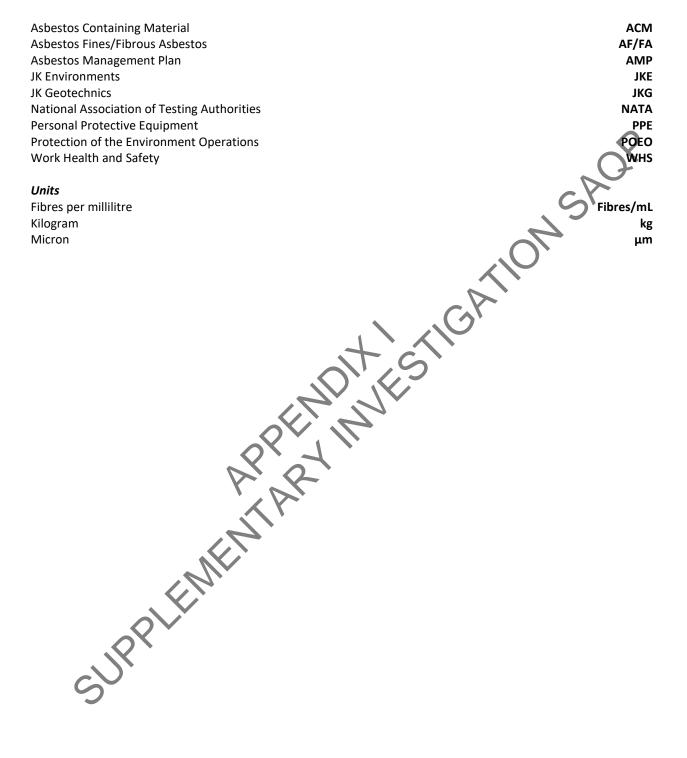
Table of Contents

INTRODUCTION 1 1 1.1 **AIMS AND OBJECTIVES** 1 1.2 SCOPE OF WORK 1 2 SITE INFORMATION 2 2.1 JUIDELINES SITE IDENTIFICATION 2 3 ASBESTOS CONTAMINATION INFORMATION 4 5 4 **APPLICATION OF THE AMP AND RESPONSIBILITIES** 5 4.1 4.2 5 5 LEGISLATIVE REQUIREMENTS 6 5.1 6 5.2 6 5.3 6 MANAGEMENT 6 7 7 6.1 6.2 8 6.3 9 6.4 9 6.5 10 6.6 10 6.7 10 6.8 10 6.9 11 DOCUMENTATION REQUIREMENTS LIMITATIONS 7 12 8 13

List of Tables

Table 2-1: Site Identification

Attachments


Appendix A: Report Figures

SUPPLEMENTARY INVESTIGATION SAOP

2

Abbreviations

1 INTRODUCTION

NSW Department of Education ('the client') commissioned JK Environments (JKE) to carry out a supplementary environmental investigation for the proposed development works at Lot 4, 47-51 Waratah Street, Kirrawee, NSW ('the site'). This Activity Specific Asbestos Management Plan (AMP) has been prepared exclusively to manage asbestos-related risks during the intrusive supplementary investigation works. This AMP is not intended to be used for the day-to-day management of asbestos at the site during the typical site operations and is not be used in relation to any asbestos materials associated with the buildings or structures on site.

The proposed scope of intrusive field works at the site includes the excavation of test pits for environmental purposes. These intrusive works may disturb asbestos impacted fill at the site. This AMP includes management requirements for working, handling, temporary storage, removal, transportation and disposal procedures, and visual clearance inspections. The AMP has been prepared generally in accordance with the requirements of SafeWork NSW.

1.1 Aims and Objectives

The aim of the AMP is to outline the procedures to be implemented in order to effectively manage the asbestos-impacted material at the site during intrusive works, in accordance with relevant Codes of Practice and Work Health and Safety (WHS) legislation. The objectives of the AMP are to:

- Outline the applicability of the AMP and the various roles and responsibilities;
- Provide a protocol for managing the excavation works, including the identification of safe work procedures to minimise potential health effects to site workers/contractors and adjacent land users; and
- Document procedures for potential asbestos waste handling and transport.

1.2 Scope of Work

The scope of work includes preparation of the AMP which provides:

- Details of roles and responsibilities;
- Methodologies for protecting workers during intrusive field works, including personal protective equipment (PPE), decontamination and visual surface clearance requirements; and
- Procedures and protocols to manage the asbestos related risks, minimise potential asbestos exposure risks to personnel/workers involved in the field works, safe handling of asbestos containing materials and minimisation of potential asbestos exposure risks to the general public/site users in the vicinity of the proposed work areas on site.

The scope of work was undertaken with reference to the WHS Regulation 2017 and the SafeWork NSW Codes of Practice: How to Manage and Control Asbestos in the Workplace (2022)¹; and How to Safely Remove Asbestos (2022)². Other guidelines and legislation/regulations have been referenced throughout the AMP where applicable.

1

¹ Safe Work NSW (2022a). Code of Practice How to Manage and Control Asbestos in the Workplace. (referred to as CoP How to Manage and Control Asbestos in the Workplace) (December 2022)

² Safe Work NSW (2022b). Code of Practice How to Safely Remove Asbestos. (referred to as CoP How to Safely Remove Asbestos) (December 2022)

2 SITE INFORMATION

2.1 Site Identification

Table 2-1: Site Identification

24B Gladstone Street, Kogarah, NSW
Lot 1 in DP179779, Lot A in DP391026, and part of Lot 1 in DP667959
Primary School (Kindergarten to Year 6)
4,375
Latitude: -33.9618430 Longitude: 151.1370970
Appendix A

JKE has previously undertaken a Phase 1 Desktop Assessment (desktop), a Phase 2 Preliminary Intrusive Investigation (intrusive investigation), and a Detailed Site Investigation (DSI) at the site. The following asbestos related finds were reported during the previous investigations:

- A single fragment of bonded asbestos containing material (ACM) on fill/soil during the site inspection in 2020. The source of the asbestos appeared to be a fibre cement board at the base of the neighbouring fence and was considered unlikely to be associated with on-site soils in that vicinity;
- A bag of fibre cement fragments (FCF)/suspected AGM (collected by others) was found on site during the DSI works in 2025. It was unclear if the material in the bag was associated with the demolition works recently undertaken at the site, or associated with surficial FCF/ACM identified on the exposed fill soils beneath these buildings (i.e. associated with imported fill); and
- Detection of asbestos [asbestos fines/fibrous asbestos (AF/FA)] in fill/soil material in one location (BH203, refer to Figure 2). The asbestos was in the friable form based on the laboratory identification of AF/FA and the National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)³ definitions. However, the occurrence of AF/FA appeared to be minor and not representative of the broader soil conditions as there were no detections elsewhere on site. The concentration of AF/FA in the fill soil sample from BH203 was very low and was below the respective Site Assessment Criterion (SAC) of 0.001%w/w presented in Schedule B1 of NEPM 2013. The source of asbestos in fill at this location was considered likely to either be associated with historical demolition activities, or imported fill material which was encountered to varying depths across the site. The asbestos was detected in fill soils beneath asphaltic concrete pavement.

Asbestos as AF/FA was not identified in any other samples collected from the site, therefore, the asbestos impact at BH203 was considered likely to be associated with bonded (non-friable) asbestos containing material (ACM) as sporadic occurrences of AF/FA can often be found co-located with ACM. The occurrence of demolition rubble inclusions in the fill supported this opinion.

³ National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013). (referred to as NEPM 2013)

Based on the above, management provisions discussed in this AMP are on the basis that asbestos in soil is associated with bonded/non-friable ACM (i.e. 'fibro') in the vicinity of BH203.

SUPPLEMENT APPENDIX ESTIGATION SAOP

3 ASBESTOS CONTAMINATION INFORMATION

The presence of asbestos in fill has only been confirmed at one location, BH203.

There is considered to be a potential for additional occurrences of asbestos in fill in other areas of the site as the fill contained demolition rubble inclusions which is often a precursor for asbestos. Notwithstanding, the investigations have not identified asbestos in fill/soil at any other location to date.

The exposure pathway for asbestos is via inhalation of airborne asbestos fibres. Exposure to asbestos fibres poses a potential risk to human health. The potential for release and transport of asbestos fibres via disturbance of soil containing asbestos has the potential to increase during the proposed excavation works. The human receptors most at risk of asbestos fibre release during field works and soil disturbance activities include the excavator operator, field engineer and nearby land users (e.g. site workers, contractors, land users beyond the site boundary, and visitors). Risks to these receptors will be mitigated under this AMP.

Asbestos fibres can range in size from 0.1 to 10 microns (μm) (one tenth the size of a grain of sand) and are a potential particulate respiratory hazard. The small fibres gain relatively easy access to the lung airways and air sacs. Damage to the respiratory tract generally tends to be time/dose dependent. An individual exposed to high doses of asbestos for long periods of time will have an increased fisk of developing asbestos related diseases. In addition, the effects of asbestos related diseases are usually not detectable for 1 to 30 years after the initial exposure. This is called the latency period, and is a distinguishing feature of asbestos related diseases.

E32976BT2rpt5-AMP

4 APPLICATION OF THE AMP AND RESPONSIBILITIES

4.1 Application of the AMP

This AMP shall apply from the commencement of soil/fill disturbance works at each test pit location, until disturbance of the fill ceases and the test pit is reinstated. The AMP is not intended to be a long-term management plan and as such it will cease to apply on completion of the field works.

4.2 Roles and Responsibilities

JKE is primarily responsible for the implementation of this AMP and will be responsible for securing the work area, arranging air monitoring during the works, implementing risk mitigation measures (as required) and managing any occurrences of asbestos encountered during test pitting.

Day to day works will be managed by the JKE field scientist, reporting to the project manager. The JKE field scientist is deemed to be a competent person and will be responsible for:

- Coordinating airborne asbestos monitoring (subcontracted to Clear Safe);
- Asbestos clearance inspections;
- Asbestos sampling and assessment;
- Review of results of any assessments;
- Advice and recommendations arising from monitoring and/or inspections during test pitting;
- Review and comment on WHS documentation with respect to asbestos assessment, management and control (as required); and
- Notification of field staff and the client if required, of any observed or documented non-compliance with this AMP.

JKE's Licensed Asbestos Assessor (LAA) is available to provide advice on WHS issues for asbestos-related works, as required, in the event suspected friable asbestos is observed. The LAA holds a NSW Asbestos Assessor Licence.

5 LEGISLATIVE REQUIREMENTS

5.1 Legislative Requirements and Regulations/Guidelines

All works must be undertaken with regards to (but not limited to) the following:

- Protection of the Environment Operations (POEO) Act 1997 (NSW);
- POEO (Waste) Regulation 2014 (NSW);
- Work Health and Safety Act 2011 (NSW);
- Work Health and Safety Regulation 2017 (NSW);
- Contaminated Land Management Act 1997 (NSW);
- CoP How to Manage and Control Asbestos in the Workplace;
- CoP How to Safely Remove Asbestos;
- National Occupational Health and Safety Commission (NOHSC), (2005). Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres 2nd Edition (NOHSC:3003 [2005]);
- NOHSC, (2005). Guidance Note on the Interpretation of Exposure Standards for Atmospheric Contaminants in the Occupational Environment 3rd Edition (NOHSC:3008 [1995]);
- AS/NZS 1715:2009 Selection, Use and Maintenance of Respiratory Protective Devices; and
- AS/NZS 1716:2012 Respiratory Protective Devices.

5.2 Non-Compliance with the AMP

Where a non-compliance with this AMP is identified, JKG's project Principal is to be notified. Where a noncompliance cannot be rectified, site works should cease, the AMP and asbestos controls reviewed, and revisions made as required.

5.3 SafeWork NSW Notification

Asbestos removal works triggering notification to SafeWork NSW is not proposed.

SUPPLEME

6 MANAGEMENT

This section outlines the requirements for managing the intrusive field works which we understand will broadly include:

- 1) Excavation of test pits using mechanical excavator;
- 2) Environmental soil sampling; and
- On-site management of spoil and reinstatement of the test pit locations as agreed with the client. 3)

We note that the site itself is fenced off and isolated from the wider school property. The following subsections outline the field work procedure to be implemented in the asbestos zone and also the remaining areas in the site that fall outside of this zone. SA

6.1 Areas of Site Outside the Asbestos Works Zone

6.1.1 PPE

As a minimum, all personnel on site will be required to wear the following PRE during intrusive works involving soil disturbance unless otherwise outlined in task specific documentation:

- Steel-capped boots (preferably lace-less);
- Hard hat meeting relevant standards;
- High visibility clothing;
- Gloves; and
- P2 rated disposable dust mask, or a half face respirator fitted with an appropriate particulate filter in compliance with the relevant standards. Respiratory Protective Devices and be used in accordance with AS/NZS 1715:2009.

6.1.2 **Field Work**

For all areas of the site outside of the identified asbestos works zone (refer to Figure 2 in Appendix A), the following actions are to be implemented:

- The asphaltic concrete pavement can be removed as required at each test pit location and should be kept separate from the underlying material. This material will be reinstated in the test pit as appropriate. In test pits positioned beneath astir turf, the Astro turf will be cut and peeled back;
- To minimise the release of fugitive dust into the air the soil will be kept damp at all times (but not flooded) This will include the use of water sprays where necessary during excavation and sampling;
- On completion of sampling, the test pits will be backfilled to the surface with the spoil. A vibrating sled will be used to compact layers of spoil in the test pits. Excess spoil will be left on site in a skip bin. Where additional material is required to make up levels within the test pits, sand will be introduced and compacted;
- Test pits excavated in paved areas will be finished with cold mix levelled to match the surrounding ground surface. Test pits excavated in astro turf will be compacted to the surrounding ground level and the previously peeled back astro turf will be laid back over the top and pinned using u-nails;
- The JKE field scientist will inspect the ground surface following test pitting and reinstatement of the borehole to confirm there is not visible excess spoil material; and
- The air monitoring subcontractor (Clear Safe) will be conducting air monitoring throughout the works.

6.1.3 Unexpected Finds Contingency

In the event that ACM is encountered in the soil in areas outside of the asbestos works zone, or if the material is suspected of being friable asbestos, all works must cease and the procedures outlined under Section 6.2 Asbestos Works Zone (BH203) must be implemented.

6.2 Asbestos Works Zone (BH203 area)

6.2.1 Asbestos Specific PPE

In addition to the site specific PPE, as a minimum, all personnel on site will be required to wear the following asbestos specific PPE during works in asbestos work zones unless otherwise outlined in task specific documentation:

- P2 rated disposable dust mask, or a half-face respirator fitted with an appropriate particulate filter in compliance with the relevant standards. Respiratory Protective Devices and be used in accordance with AS/NZS 1715:2009;
- Disposable coveralls that prevent tearing and penetration of asbestos fibres (e.g. coveralls type 5, category 3 per EN ISO 13982–1 or equivalent); and
- Disposable boot covers made of a material consistent with the disposable coveralls or:
 - Gumboots may be worn in the asbestos removal area if they are decontaminated upon exiting the asbestos removal area; or
 - A separate set of work boot may be maintained in the asbestos work zone.

Care should be taken to ensure PPE compatibility and that a suitable degree of worker comfort is maintained. Regardless of the PPE adopted, asbestos removal workers must undertake appropriate personal decontamination upon leaving the asbestos work zone as outlined in the CoP How to Safely Remove Asbestos.

6.2.2 Field Work

The asbestos works zone is shown on Figure 2 in Appendix A. The following actions are to be implemented:

- Establish a defined asbestos work zone to limit access to the work area by installing bollards/witches' hats and warning signs so that the areas are not encroached upon by other site users (we note that other site users will be limited to the archaeological consultants undertaking their works concurrently). The zone will carry appropriate signage to indicate that asbestos disturbance/removal works are in progress. Where reasonably practicable to do so, the exclusion area will be established at a distance of 5-10m from the test pit/borehole using bollards or similar;
- The asphaltic concrete pavement will be removed as required at each test pit location and should be kept separate from the underlying material. This material will be disposed of accordingly;
- Prior to excavation of the fill, the surrounding areas will be covered with builder's plastic, or a similar material, to minimise the transfer of contaminated dust and/or soil to the surrounding areas;
- Works are to occur as required and any excavated material or spoil generated will be set aside on geofabric or builders' plastic, and managed on the assumption that it contains asbestos until or unless demonstrated otherwise;
- To minimise the release of fibres into the air the soil will be kept damp at all times (but not flooded). This will include the use of water sprays where necessary during excavation and sampling;

- On completion of sampling, the test pits will be backfilled to the surface with the spoil. A vibrating sled will be used to compact layers of spoil in the test pits. Excess spoil will be left on site in a skip bin. Where additional material is required to make up levels within the test pits, washed sand will be introduced and compacted;
- Test pits excavated in paved areas will be finished with cold mix levelled to match the surrounding ground surface. Test pits excavated in astro turf will be compacted to the surrounding ground level and the previously peeled back astro turf will be laid back over the top and pinned using u-nails;
- The JKE field scientist will inspect the ground surface following test pitting and reinstatement of the borehole to confirm there is not visible asbestos material; and
- The air monitoring subcontractor (Clear Safe) will be conducting air monitoring throughout the works.

6.3 Air Monitoring

During the intrusive field works, air monitoring will be undertaken by the subcontractor (Clear Safe) using calibrated portable air sampling pumps. Monitoring locations will be determined by Clear Safe, however, preliminary discussions have suggested two locations along the common boundary with residential areas and an additional three locations surrounding the work area each day. At the end of each day, the pumps and attached filters will be collected and analysed at a NATA-accredited laboratory.

Air monitoring works shall be conducted in accordance with NOHSC Guidance Note on the Membrane Filter Method for Estimating Airborne Asbestos Fibres 2nd Edition (NOHSC:3003 [2005]). The results of air monitoring are to be provided to the JKE. The following action levels will be applied upon receipt of results:

- Reading of less than 0.01 fibres/mL control measures implemented were appropriate and no action required; and
- Reading greater than 0.02 fibres/mL control measures implemented may not have been appropriate, further action/site rectification may be required. SafeWork may need to be notified.

6.4 Isolation, Barricading and Signage

JKE is to take reasonable steps so the necessary measures are in place for the effective exclusion of unauthorised persons to asbestos work zones. The location, type and positioning of signs and labels must be decided, or authorised, by a competent person (i.e. the field scientist). Warning signs may include some of the following examples:

6.5 Restriction of Access to Asbestos Work Zone

Access to the asbestos- work area(s) will be restricted only to:

- Workers engaged for the intrusive field works, including JKE's field scientist and the excavator operator;
- Other persons associated with the intrusive field works such as the LAA (where required); and
- Anyone allowed under the WHS Regulation or another law to be in the asbestos works area.

6.6 Wet Methods

A low-pressure water spray is to be available and utilised as required for wetting down asbestos-impacted soils. This will be the primary control for dust generation and is considered adequate given the small-scale nature of the disturbance.

As a precautionary measure, this water spray will be utilised for wetting down all soils (including outside of the asbestos work zone), during the intrusive works.

6.7 Decontamination

A decontamination zone is to be established adjacent to a single entry/exit point to the asbestos work zone. Personal decontamination will include:

- Wiping down boots and coveralls with a wet rag and scraping off any soil clods; and
- Removing coveralls, gloves and then respirator/mask and placing in appropriate plastic asbestos waste bags within the provided disposal bin located at the entry/exit point.

Decontamination of the excavator/field equipment will include wiping down of the excavator bucket and any other equipment that comes into contact with the fill/soil.

6.8 Waste Management

6.8.1 Asbestos Waste (consumables and visible ACM)

Disposable items of PPE are to be bagged prior to being removed from the asbestos work zone. The bagged PPE will be deemed asbestos waste and will be bagged and placed in the designated asbestos waste bin onsite. Asbestos waste shall not be allowed to accumulate excessively within the work area and shall be bagged or placed in the skip bin as the work proceeds.

Sporadic fragments of ACM may be identified during the works and it is anticipated that this material will be sampled for further laboratory analysis.

6.8.2 Loading, Transport and Disposal of Asbestos Waste

Any asbestos waste from the works will be loaded directly into the designated asbestos waste bin onsite. The contents will be secured at the end of each working day (i.e. using a lockable lid or locating the skip in a secure area) to prevent unauthorised access.

The waste transporter is licenced for asbestos waste disposal and copies of asbestos waste disposal certificates/receipts will be obtained by JKE.

6.9 Clearance

The JKE field scientist will visually check the ground surface and clear any visible fibre cement/suspected ACM prior to moving to the next location. The result will be noted on the test pit logs and a clearance certificate will be issued.

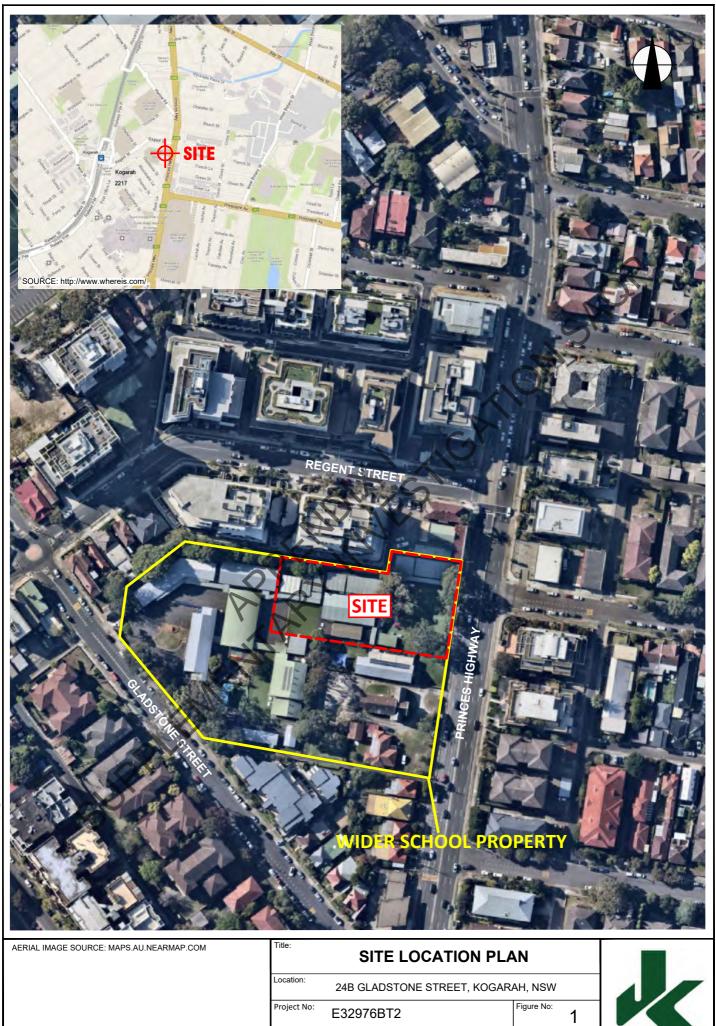
ener

7 **DOCUMENTATION REQUIREMENTS**

JKE will maintain records in relation to the works and implementation of the AMP. This will include but will not be necessarily limited to the following:

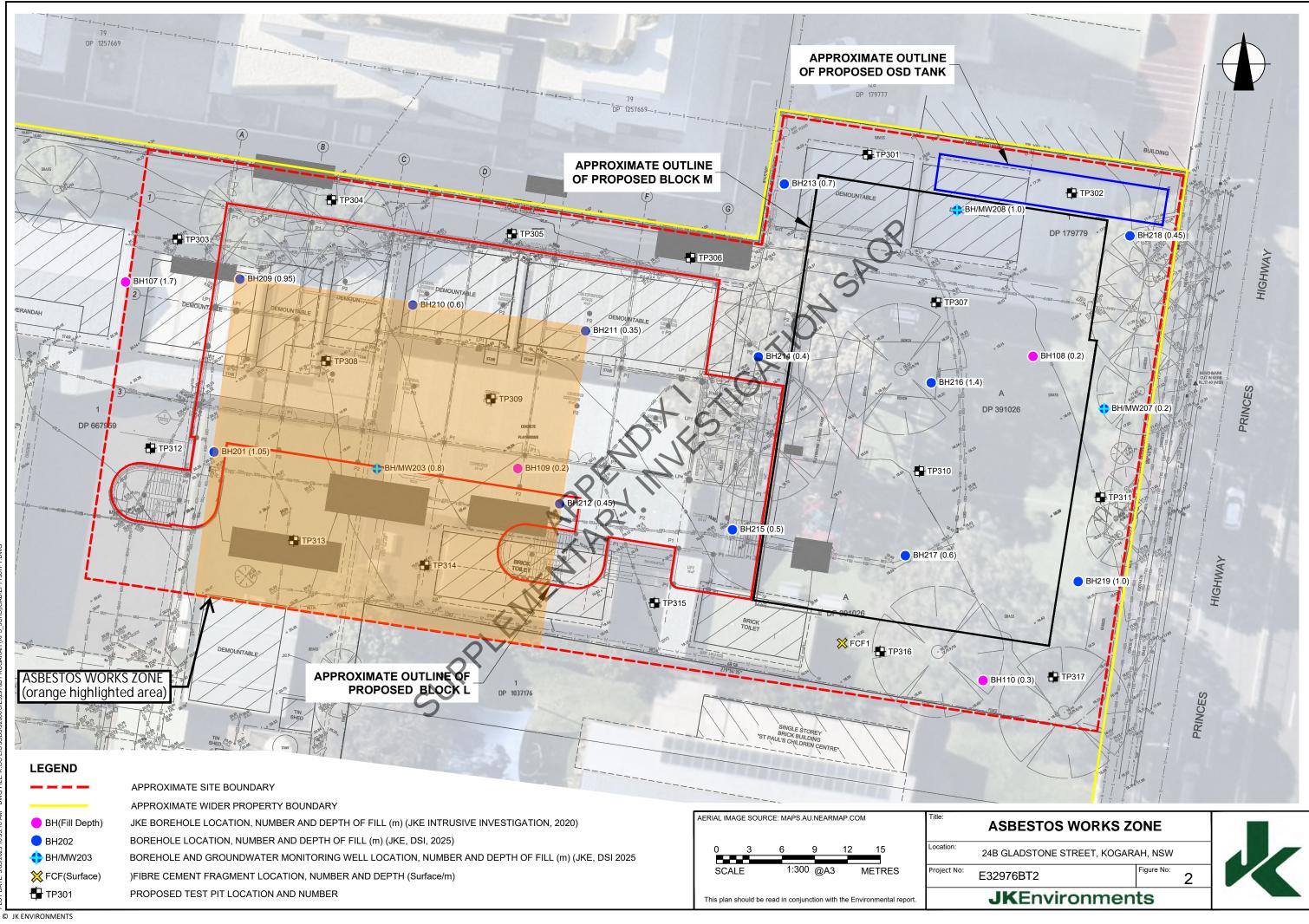
- Air monitoring reports and clearances;
- Waste disposal dockets (once received from the waste transporter); and .
- .

SUPPLEMENT APPENDIX ESTIGATION SAOP


8 LIMITATIONS

- JKE accepts no responsibility for any unidentified contamination issues at the site. Any unexpected problems/subsurface features that may be encountered during future development or maintenance works should be inspected by an environmental consultant as soon as possible;
- Previous use of this site may have involved excavation for the foundations of buildings, services, and similar facilities. In addition, unrecorded excavation and burial of material may have occurred on the site. Backfilling of excavations could have been undertaken with potentially contaminated material that may be discovered in discrete, isolated locations across the site during future work;
- The preparation of this report has been undertaken in accordance with accepted practice for environmental consultants, with reference to applicable environmental regulatory authority and industry standards, guidelines and the assessment criteria outlined in the report;
- Where information has been provided by third parties, JKE has not undertaken any verification process, except where specifically stated in the report;
- JKE has not undertaken any assessment of off-site areas that may be potential contamination sources or may have been impacted by site contamination, except where specifically stated in the report;
- JKE have not and will not make any determination regarding finances associated with the site;
- Material considered to be suitable from a geotechnical point of view may be unsatisfactory from a soil contamination viewpoint, and vice versa; and
- This report has been prepared for the particular project described and no responsibility is accepted for the use of any part of this report in any other context or for any other purpose.

E32976BT2rpt5-AMP



JKEnvironments

This plan should be read in conjunction with the Environmental report.

QA/QC Definitions

The QA/QC terms used in this report are defined below. The definitions are in accordance with US EPA publication SW-846, entitled *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (1994)²⁰ methods and those described in *Environmental Sampling and Analysis, A Practical Guide,* (1991)²¹. The NEPM (2013) is consistent with these documents.

A. <u>Practical Quantitation Limit (PQL), Limit of Reporting (LOR) & Estimated Quantitation Limit (EQL)</u>

These terms all refer to the concentration above which results can be expressed with a minimum 95% confidence level. The laboratory reporting limits are generally set at ten times the standard deviation for the Method Detection Limit for each specific analyte. For the purposes of this report the LOR, PQL, and EQL are considered to be equivalent.

When assessing laboratory data it should be borne in mind that values at or near the PQL have two important limitations: "The uncertainty of the measurement value can approach, and even equal, the reported value. Secondly, confirmation of the analytes reported is virtually impossible unless identification uses highly selective methods. These issues diminish when reliably measurable amounts of analytes are present. Accordingly, legal and regulatory actions should be limited to data at or above the reliable detection limit" (Keith, 1991).

B. <u>Precision</u>

The degree to which data generated from repeated measurements differ from one another due to random errors. Precision is measured using the standard deviation or Relative Percent Difference (RPD).

C. <u>Accuracy</u>

Accuracy is a measure of the agreement between an experimental result and the true value of the parameter being measured (i.e. the proximity of an averaged result to the true value, where all random errors have been statistically removed). The assessment of accuracy for an analysis can be achieved through the analysis of known reference materials or assessed by the analysis of surrogates, field blanks, trip spikes and matrix spikes. Accuracy is typically reported as percent recovery.

D. <u>Representativeness</u>

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is primarily dependent upon the design and implementation of the sampling program. Representativeness of the data is partially ensured by the avoidance of contamination, adherence to sample handing and analysis protocols and use of proper chain-of-custody and documentation procedures.

E. <u>Completeness</u>

Completeness is a measure of the number of valid measurements in a data set compared to the total number of measurements made and overall performance against DQIs. The following information is assessed for completeness:

- Chain-of-custody forms;
- Sample receipt form;
- All sample results reported;
- All blank data reported;

 ²⁰ US EPA, (1994). SW-846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. (US EPA SW-846)
 ²¹ Keith., H, (1991). Environmental Sampling and Analysis, A Practical Guide

- All laboratory duplicate and RPDs calculated;
- All surrogate spike data reported;
- All matrix spike and lab control spike (LCS) data reported and RPDs calculated;
- Spike recovery acceptable limits reported; and
- NATA stamp on reports.

F. <u>Comparability</u>

Comparability is the evaluation of the similarity of conditions (e.g. sample depth, sample homogeneity) under which separate sets of data are produced. Data comparability checks include a bias assessment that may arise from the following sources:

- Collection and analysis of samples by different personnel; Use of different techniques;
- Collection and analysis by the same personnel using the same methods but at different times; and
- Spatial and temporal changes (due to environmental dynamics).

G. <u>Blanks</u>

The purpose of laboratory and field blanks is to check for artefacts and interferences that may arise during sampling, transport and analysis.

H. Matrix Spikes

Samples are spiked with laboratory grade standards to detect interactive effects between the sample matrix and the analytes being measured. Matrix Spikes are reported as a percent recovery and are prepared for 1 in every 20 samples. Sample batches that contain less than 20 samples may be reported with a Matrix Spike from another batch. The percent recovery is calculated using the formula below. Acceptable recovery limits are 70% to 130%.

(Spike Sample Result -Sample Result) x 100 Concentration of Spike Added

I. Surrogate Spikes

Samples are spiked with a known concentration of compounds that are chemically related to the analyte being investigated but unlikely to be detected in the environment. The purpose of the Surrogate Spikes is to check the accuracy of the analytical technique. Surrogate Spikes are reported as percent recovery.

J. <u>Duplicates</u>

Laboratory duplicates measure precision, expressed as Relative Percent Difference. Duplicates are prepared from a single field sample and analysed as two separate extraction procedures in the laboratory. The RPD is calculated using the formula where D1 is the sample concentration and D2 is the duplicate sample concentration:

 $\frac{(D1 - D2) \times 100}{(D1 + D2)/2}$

Appendix E: Guidelines and Reference Documents

Australian and New Zealand Governments (ANZG), (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

National Health and Medical Research Council (NHMRC), (2021). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

NSW EPA, (2022). Sampling design part 1 - application, Contaminated Land Guidelines

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW)

Western Australia Department of Health, (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia

Appendix J: Guidelines and Reference Documents

Acid Sulfate Soils Management Advisory Committee (ASSMAC), (1998). Acid Sulfate Soils Manual

Australian and New Zealand Governments (ANZG), (2018). Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia

Canadian Council of Ministers of the Environment, (1999). Canadian soil quality guidelines for the protection of environmental and human health: Benzo(a)Pyrene (1997)

CRC Care, (2011). Technical Report No. 10 – Health screening levels for hydrocarbons in soil and groundwater Part 1: Technical development document

Contaminated Land Management Act 1997 (NSW)

Department of Land and Water Conservation, (1997). 1:25,000 Acid Sulfate Soil Risk Map Series

Heads of EPAs Australia and New Zealand (HEPA), (2020). PFAS National Environmental Management Plan Version 2.0 - January 2020

Managing Land Contamination, Planning Guidelines SEPP55 – Remediation of Land (1998)

National Health and Medical Research Council (NHMRC), (2021). National Water Quality Management Strategy, Australian Drinking Water Guidelines 2011

NSW Department of Environment and Conservation, (2007). Guidelines for the Assessment and Management of Groundwater Contamination

NSW EPA, (2014). Waste Classification Guidelines - Part 1: Classifying Waste

NSW EPA, (2015). Guidelines on the Duty to Report Contamination under Section 60 of the CLM Act 1997

NSW EPA, (2017). Guidelines for the NSW Site Auditor Scheme, 3rd Edition

NSW EPA, (2020). Consultants Reporting on Contaminated Land, Contaminated Land Guidelines

NSW EPA, (2022). Sampling design part 1 - application, Contaminated Land Guidelines

National Environment Protection Council (NEPC), (2013). National Environmental Protection (Assessment of Site Contamination) Measure 1999 as amended (2013)

Olszowy, H., Torr, P., and Imray, P., (1995). Trace Element Concentrations in Soils from Rural and Urban Areas of Australia. Contaminated Sites Monograph Series No. 4. Department of Human Services and Health, Environment Protection Agency, and South Australian Health Commission

Protection of the Environment Operations Act 1997 (NSW)

State Environmental Planning Policy (Resilience and Hazards) 2021 (NSW)

World Health Organisation (WHO), (2008). Petroleum Products in Drinking-water, Background document for the development of WHO Guidelines for Drinking Water Quality

Western Australia Department of Health, (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia

